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ABSTRACT

For an arbitrary real number o with convergents 22, L+ L2 .. | (n+¢;)a] — [na] is

equal to p;, and so is independent of n, except at a small specified number of values of n. For
fixed n, this relation holds for all or for all except a finite number of values of .

1. INTRODUCTION

Bunder and Tognetti noted in [3] that any section of the graph of |n7| where 7 = %(\/_ -
1)) is “matched” for larger values of n. More precisely they proved:

[(n+ Fy)r| = |[n7] = Fi
except at n = kF; 1 + | k7| F; where
l(n+ F)1| — |nT| = F_1 — (—1)".
In this paper we will generalize this result to:

|[(n+ ¢;)a] — [na] = p; (possibly — (—1)%)

where « is an arbitrary positive irrational number and Z—g, %, Z—z, ... are the convergents of
- F B B
o - just as 7, 7, 7, ... are the convergents of 7.

2. CONTINUED FRACTIONS AND CONVERGENTS

Definition 1: If « is any real number and o = [ag, a1, az,... | in continued fraction form,
then the ith convergent of « is given by:

bi

— = [ao,al,az,... , g ]

di

We quote the following properties of convergents from Khintchine [5]:

Lemma 1: If o« = [ag,a1,a2,... ] then

(i) p-1=¢2=landp2=q-1=0.
(ii) Fori >0:

(a) pi = a;pi—1 + pi—2
(b) @i = aigi—1 + qi—2.
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3. THE MAIN RESULT

We will be using work of Fraenkel, Levitt and Shimshoni [4] (their result assumes 1 < o <
2, but holds for o > 0). In particular they use a generalization of the Zeckendorf expansion of
an integer (used in [3]). This generalization, as pointed out in Allouche and Shallit [1], is in

fact due to Ostrowski 1922 (see [6]).
Theorem 1: Given a positive irrational a with convergents f;—g, %, 5—2, ..., every positive
integer n can be represented uniquely by the Ostrowski a-numeration:

m
n = Z kiq;
i=h

where kj, # 0, m > h > 0 and the k; satisfy the following conditions:

(i) For each i, 0 < k; < a;41.

(11) If i >0and k; = i1, k;—1=0.

(iii) If h =0, kp, < ay.

Note: In the remainder of the paper, every such representation of an integer will be assumed
to be an Ostrowski a-numeration.

Theorem 2: Given a positive irrational o with convergents 22, EL P2 jf

g’ q1’ g2’
m
n:E kiq;
i=h

then
lna| = Z kip; + (=1 if h is odd).
i=h

Proof: Let « = o/ +r where 1 < o/ < 2 and r is an integer > —1. The convergents for
2’—8, %, 2’—;, ... where p; + rq; = p;.

Theorem 1 gives us the unique numeration for n, which is the same for a and for o/, and
by Fraenkel, Levitt and Shimshoni [4]:

o are

na’ | = Z kip; + (=1 if h is odd).
i=h
So,

|na| = nr + |nd’|

= Zrki%’ + Z ki(pi —rq;) + (=1 if h is odd)
i=h i=h

m
= kipi + (—1if b is odd).
i=h
We can now prove our main result.
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Theorem 3: If o is a positive irrational with convergents 22 2L 22 and n =", kiq;
9’ @1’ g2’ i=h )
then

Dj if h <jorj+ his even,

_I_ . p— = .
|(n 4+ gj)a] — [na| { pj +(—1)7 if j <hand j+ his odd.

Proof: Let n = E;i n kig;. In each of the cases below we find the corresponding Ostrowski
a-enumeration of n + ¢; and then use Theorem 2.

Case 1: If j <h—1or j=h—1and kp < ap41 then

n+q; =4q; +Zki%’-
i=h
Then [(n + ¢;)a] — |na] =p; + (=1 if j is odd) +(1 if h is odd), which gives the result.
Case 2: If j =h —1 and kp = ap41,

T m
n=> aniokiqnian+ D, kigi
k=0 i=h+2r+1

where r > 0, kpyor+1 < Gptort2, and kpyorto < apyorses or m = h + 2r. Then

n+q; = (khyor+1 + D @hyori1 + Z kiqi.
i=h+42r+2
Then j + h is odd and:

[(n+¢j)a) — |no) = ppryoryr + (=1 1if b is even) — Z Aht2k+1Ph+2k + (1 if A is odd)
k=0

=p; + (=1)’.

Case 3: If m > j > h and either 0 < k; < aj41 — 1,0 < kj = aj41 — 1 and kj_; =0, or
k’j =0 and kj+1 < j+2, then,

Jj—1 m
ntq = kigi+(ki+ g+ Y kig;
i=h i=j+1

and

L(n+g;)a] — [na) = p;.
Case 4: If m > j>h, ]{Ij =ajy1 — 1, k‘j+1 < Gj+42 and ]{33;1 > 0 then,
Jj—2 m
n+q; =Y kigi+ (kj—1 = Daj1 + (ke + Dgja + ) kigs
i=h i=j+42
and
[(n+gj)a] — [na| = —pj—1 +pj+1 — kjpj = p;.
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Case 5: If m>j=h=0and kg =a; — 1,

T m
n=(a1—1)q+ Y amsrgor+ » kigi
k=1 1=2r+1

where ko1 < agpq2 and r >0 (as h = 0,ko > 1). Then,

n+q; = (kar41 + 1)gor1 + Z kiq;
i=2r+2
and

L(n+¢qj)a) — [na] = pari1 —1— (a1 — 1)po — Za%—i-lp% =p1 — 1 —aipo+po = po.
k=1

Case 6: f m>j > h, kj =aj41 — 1 and kj41 = ajqo then aj4; =1 and

n = Z kiq; + Z Qj12k+2qj42k+1 + Z kiq;

1=7+2r+42

where r > 0 and kjyo,42 < @jp2r43 Or J +2r + 1 = m, then,

m
n+q; = Z kigi + (kjiorte + 1)qj12r12 + Z kidi,
i=h i=j+2r+3
and
[(n+ g;)a] — [na) = pjaria — > jp2ki2Djt2641 = Dj-
k=0
Case 7: If m>j > hand kj =a;4q then j>0and kj_1 =0or j =h and

j—2r—2 r+s

Z kQZ+Zaj+2k: 2r41j+2k—2r + Z kig;

1=j+2s+1

where r,s > 0, h < j—2r—2or h = j — 2r, and j + 2s < m, there are several cases. If
m = j + 2s, the last summation is zero. If m > j + 25,k 10641 < @jpos42. If j—2r =2 < h
the first summation is zero. If j —2r —2 > h, kj_o,_2 < ajqor—1. If j —2r =0, as g1 = 0,
the second summation sums to gjyos+1, i.e. h = j+2s+1, which is impossible. So j —2r > 0.
If 7 — 2r > 1, kj_gr_g +1< Qj_2r—1 OT kj_gr_g +1= Aj—2r—1, J— 2r — 2 > 0 and either
kj_or—3=0o0rh=j—2r—2,

j—2r—3
n+q; = Z kigi + (kj—or—2 + 1)gj—2r—2 + (aj—2r — 1)gj—2r—1+

m
Z aj—ortokqi—2r+2k—1 + (Kjr2s+1 + 1)qj+2s+1 + Z kiq;.
k=1 i=j+2s+2

If h =j —2r > 1, we have the same but with zero for the first summation and k;_2,_s.
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Then in these cases:

[(n+qj)a] — [na] =pj_or—2+ (aj_2, — 1)pj_2r—1

r r+s
+ Z Qj—2r+2kPj—2r+2k—1 T Dj4+2s+1 — Z Aj+2k—2r+1Pj+2k—2r = Pj-
k=1 k=0

Ifj—2r>1,ki_oro+1=aj9,—1,h<j—2r—3and kj_9._3 >0,

j—2r—4
n+q; = Z kiqi + (kj—2r—3 — 1)qj—2,—3
i=h

T m
+ Z aj—ort2kqi—2r+2k—1 + (Kjr2s+1 + 1)qjr2s+1 + Z kiq;.
k=0 i=j+2542

Ifh=j—-2r—-2=0and kg + 1 = a1, the expansion of n + ¢; is the same but with zero for
the first sum and for the g;_2,_3 term.

In these cases:

T
L[(n+qj)a) — [na)] = —pj_or—3 + Z Aj—2r+2kDj—2r+2k—1

k=0
r4+s
+ Pjt+2s+1 — Z Aj42k—2r4+1Pj+2k—2r — kj—2r—2pj—2r—2 = Dj-

k=0

Ifj—2r=1,his1,

T m
n+q; = (a1 —1)go + Z aok+192k + (F2rq2st2 + 1)qart2s42 + Z kiq;
k=1 i=2r+25+3

and

r r+s
[(n+ gqj)a) — [na] = (a1 — 1)po + Z A2k+1DP2k + D2r42s+2 — Z agk+2P2k+1 + 1 = pj.

k=1 k=0

Case 8: If j >m+1lorj=m+1thenn+q; = -, kigi+g; and [(n+¢;)a] — |[na] = p;.
Case 9: If j = m+ 1 and ay,42 = 1 then n 4+ ¢; = Z;i;l kiqi + (km — 1)@m + @m+2 and
L(n + Qj)aJ - LTLCMJ = —Pm T Pm+2 = Dj-
4. THE MISMATCH POINTS
It follows that the values of n (called j-mismatch points in [3]) where | (n+¢;)a| — [no] #
p; are those with n = Z;’ijwrﬂ k;q;, where r > 0.

Ifn = Zgh kiq; is fixed, [(n + gj)a| — [na] # p; only when j = h—1, h -3, ...,
h—2(25) <.

If h=0, |[(n+qj)o] — [na] =p; for all j.
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5. A SPECIAL CASE

In the special case where a; is a constant i.e., & = [a,a,a,...] = § (a+ (a* + 412, it is
easy to show from Lemma 1 that p; = ¢;41.
We now show that the numbers n where

L(n + g;)a] — [na) = p; + (=1)!
(the j-mismatch points) are exactly the numbers of the form
n=kqj+1 + |kalg;.

First we need a lemma:
Lemma 2: If o = [a,a,a,...] and t,i > 0 then q;qt + ¢i+1G1+1 = Gitt+2-
Proof:
¢t + Gi+1Ge+1 = ¢iqe + (g + ¢i—1)qi11

= qi—1qt+1 + qi(aqie1 + Qt)

= qi—1qt+1 t GiqGe4-2

= Qi—2Gt+2 + ¢i—1Gt+3

= q-1Gt+i+1 T qoGt+i+2

= Qitt42 a5 ¢—1 =0 and qo = aq—1 +q—2 = 1.
Theorem 4: Given a = [a,a,a,a...] =1 (a+ (a® +4)V/?),
(a) If n is not of the form kq;_1 + [ka]g;, then |(n +g;)a] — [na] =p;.
(b) If n is of the form kq;—1 + |kagq;, then |(n+ ¢j)a] — [na| =p; + (—1)7.

Proof: (a) If n =", kiq; and |(n + gj)a] — |na] # p;, then j < h and j + h (and so
h — j) is odd by Theorem 3.
Let k=", kigi—j—1, then by Theorem 3, using p;—j_1 = ¢;—; and Lemma 2,

kgj1+ Lkalgy = ki(gj-1¢i—j-1 + ¢;gi—;)
i=h

m
= Z kiq; = n.
i=h

Hence if n is not of the form kq;_1 + |ka|g; then |(n+ gj)a] — [na| = p;.
(b) Let k = Zﬁhl k;qi, then, as above, if n = kq;_1 + | ka]g,

n —= Z kiQi+j+1 + (—Qj if hl is Odd)
i=hq

If hy is even we have j < hy + j + 1 = h(for n) and j + h is odd.

If hy is odd gny4j41 — ¢ = aZf;;il ¢r S0 h(forn) =j+4+1> j and j + h is odd.
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So in either case, by Theorem 3:

[(n+q5)a] — [na) = p; + (=1).

The j-mismatch points for o = [b,a,a,a,...] can be shown to be kg;_1 + |k(a + a — b)]qgj,
but the result does not generalize, in an obvious way, to as representable as other repeated
continued fractions.

6. AN ALTERNATIVE TO THEOREM 2

The 0 < a < 1, and so pg = 0, case of the following alternative to Theorem 2 appears in
Brown [2] and in Allouche and Shallit [1]. It follows easily from our Theorems 2 and 3.

Theorem 5: If « is a positive irrational number with convergents z—g, z—i, 7;—;, ... and n has

Ostrowski a-numeration Y .-, k;q;, then |(n + 1)a] = > 1", kipi + po-
Proof: By Theorems 3 and 2, as qp = 1:

Do if h is even,
+1al = T
[((n+ 1)a] = |naf { po+ 1 if his odd.
= Z kipi + po
i=h

The results in Theorems 2 and 5 look quite different, however we could have used (the 0 < a < 1
case of) the latter, instead of Theorem 2, to prove Theorem 3 in a similar way to the above.
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