A NEW GENERALIZATION OF THE GOLDEN RATIO

Vedran Krčadinac
Department of Mathematics, University of Zagreb, P.P. 335, HR-10002 Zagreb, Croatia
e-mail: krcko@math.hr
(Submitted January 2005-Final Revision May 2005)

Abstract

We propose a generalization of the golden section based on division in mean and extreme ratio. The associated integer sequences have many interesting properties.

1. GENERALIZED GOLDEN RATIOS

There have been many generalizations of the number known as golden ratio or golden section, $\phi=\frac{1+\sqrt{5}}{2}$. Examples are G.A. Moore's golden numbers [10] and S. Bradley's nearly golden sections [5] (see also [7] and [9]). A generalization that has been considered by several authors are the positive roots of $x^{k+1}-x^{k}-1=0$; see [12] and [14]. In this paper, a similar generalization is proposed. It is based on the original definition of ϕ, division of a line segment in mean and extreme ratio.

Let G be a point dividing the segment $\overline{A B}$ in parts of length $a=|A G|$ and $b=|G B|$; suppose $a>b$. The division is mean and extreme if the ratio of the larger to the smaller part equals the ratio of the whole segment to the larger part:

$$
\frac{a}{b}=\frac{a+b}{a}
$$

Given a positive integer k, we consider divisions satisfying

$$
\left(\frac{a}{b}\right)^{k}=\frac{a+b}{a}
$$

For $k>1$, we have not one but two ratios: $\varphi_{k}=\frac{a}{b}$ and $\phi_{k}=\frac{a+b}{a}=1+\frac{1}{\varphi_{k}}$. These numbers will be called the k-th lower and upper golden ratio, respectively. Obviously, $\left(\varphi_{k}\right)^{k}=\phi_{k}$. It is also evident that φ_{k} is a root of the polynomial $p_{k}(x)=x^{k+1}-x-1$ and ϕ_{k} is a root of the polynomial $P_{k}(x)=x(x-1)^{k}-1$.
Proposition 1.1: For every positive integer k, the polynomials $p_{k}(x)$ and $P_{k}(x)$ have a unique positive root. If k is even this is the only real root, and if k is odd the polynomials have another negative root.

Proof: The equation $p_{k}(x)=0$ can be rewritten as $x^{k}-1=\frac{1}{x}$. Thus, real roots correspond to intersections of the hyperbola $y=\frac{1}{x}$ and the graph of the power function translated one unit downwards, $y=x^{k}-1$. Similarly, real roots of P_{k} correspond to intersections of the hyperbola and the graph of the power function translated one unit to the right, $y=(x-1)^{k}$. The claims follow from elementary properties of the functions involved.

Therefore, φ_{k} is the unique positive root of p_{k} and ϕ_{k} is the unique positive root of P_{k}. The only instance when φ_{k} and ϕ_{k} coincide is $k=1$, when both are equal to the ordinary golden ratio ϕ. The second lower golden ratio φ_{2} has been called plastic number by the Benedictine monk and architect Dom Hans van der Laan [1]. This is the smallest Pisot-Vijayaraghavan
number (see [4]). Its square, ϕ_{2}, is also a cubic Pisot-Vijayaraghavan number. In Table 1 , we list decimal approximations to the first five lower and upper golden ratios. As k grows, the lower golden ratios tend to 1 and the upper golden ratios tend to 2 .

k	φ_{k}	ϕ_{k}
1	1.6180339887	1.6180339887
2	1.3247179572	1.7548776662
3	1.2207440846	1.8191725134
4	1.1673039783	1.8566748839
5	1.1347241384	1.8812714616

Table 1: Lower and upper golden ratios.
Proposition 1.2: $\lim _{k \rightarrow \infty} \varphi_{k}=1, \lim _{k \rightarrow \infty} \phi_{k}=2$.
Proof: By direct computation, p_{k} is strictly increasing on $[1, \sqrt[k+1]{3}]$, attains a negative value at $x=1$ and a positive value at $x=\sqrt[k+1]{3}$. Hence, p_{k} has a unique zero in this interval, i.e. $\varphi_{k} \in(1, \sqrt[k+1]{3})$. The proposition follows from $\lim _{k \rightarrow \infty} \sqrt[k+1]{3}=1$ and $\phi_{k}=1+\frac{1}{\varphi_{k}}$.

2. ASSOCIATED INTEGER SEQUENCES

The connection between the golden ratio and Fibonacci numbers is well known. We can define integer sequences associated with the generalized golden ratios in a similar manner. The k-th lower Fibonacci sequence $f_{n}^{(k)}$ is defined by $f_{1}^{(k)}=f_{2}^{(k)}=\ldots=f_{k+1}^{(k)}=1$ and the linear recurrence with characteristic polynomial p_{k} :

$$
f_{n}^{(k)}=f_{n-k}^{(k)}+f_{n-k-1}^{(k)} .
$$

The k-th upper Fibonacci sequence $F_{n}^{(k)}$ satisfies the same initial conditions and the linear recurrence with characteristic polynomial P_{k}. By the binomial theorem, we get

$$
F_{n}^{(k)}=\sum_{i=1}^{k}\binom{k}{i}(-1)^{i+1} F_{n-i}^{(k)}+F_{n-k-1}^{(k)} .
$$

Of course, both $f_{n}^{(1)}$ and $F_{n}^{(1)}$ are just the Fibonacci numbers. The second lower Fibonacci sequence has been called the Padovan sequence in [13]:

$$
\left(f_{n}^{(2)}\right)=(1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49,65,86, \ldots) .
$$

This is sequence number A000931 in N. Sloane's Encyclopedia of Integer Sequences [11]. Another interesting sequence satisfying the same recurrence with different initial conditions is the

Perrin sequence (Sloane's A001608), giving a necessary condition for primality [2]. The second upper Fibonacci sequence is Sloane's A005251:

$$
\left(F_{n}^{(2)}\right)=(1,1,1,2,4,7,12,21,37,65,114,200,351,616,1081, \ldots) .
$$

Among other combinatorial interpretations, $F_{n}^{(2)}$ is the number of compositions of n without 2 's [6] and the number of binary strings of length $n-3$ without isolated ones [3]. Notice that $F_{n+1}^{(2)}=f_{2 n-1}^{(2)}$.

The third lower Fibonacci sequence is listed in [11] as A079398:

$$
\left(f_{n}^{(3)}\right)=(1,1,1,1,2,2,2,3,4,4,5,7,8,9,12,15,17,21,27,32, \ldots) .
$$

Upper Fibonacci sequences are currently listed up to $k=5$. Here are the first few values of $F_{n}^{(3)}$, Sloane's A003522:

$$
\left(F_{n}^{(3)}\right)=(1,1,1,1,2,5,11,21,37,64,113,205,377,693,1266, \ldots) .
$$

De Villiers [14] considered sequences defined by the recurrence $L_{n}^{(k)}=L_{n-1}^{(k)}+L_{n-k-1}^{(k)}$. When equipped with Fibonacci-like initial conditions, $L_{1}^{(k)}=\ldots=L_{k+1}^{(k)}=1$, these are the Lamé sequences of higher order (according to [11]). De Villiers gave a partial proof that ratios of consecutive members tend to the positive root of $x^{k+1}-x^{k}-1=0$, generalizing a famous property of the Fibonacci numbers. The proof was later completed by S. Falcon [8]. Not surprisingly, ratios of consecutive members of the lower and upper Fibonacci sequences tend to the corresponding golden ratios.
Theorem 2.1: $\lim _{n \rightarrow \infty} \frac{f_{n+1}^{(k)}}{f_{n}^{(k)}}=\varphi_{k}, \lim _{n \rightarrow \infty} \frac{F_{n+1}^{(k)}}{F_{n}^{(k)}}=\phi_{k}$.
Proof: The polynomials p_{k}, P_{k} and their derivatives are relatively prime. Therefore, p_{k} and P_{k} have $k+1$ distinct complex roots each and formulae for the corresponding integer sequences are of the form $a_{n}=C_{0} z_{0}^{n}+\ldots+C_{k} z_{k}^{n}$. Here, z_{0}, \ldots, z_{k} are the roots of p_{k} or P_{k} and C_{0}, \ldots, C_{k} are constants. The quotient of two consecutive sequence members can be expressed as

$$
\frac{a_{n+1}}{a_{n}}=\frac{C_{0} z_{0}^{n+1}+\ldots+C_{k} z_{k}^{n+1}}{C_{0} z_{0}^{n}+\ldots+C_{k} z_{k}^{n}}=\frac{C_{0} z_{0}+C_{1} z_{1}\left(\frac{z_{1}}{z_{0}}\right)^{n}+\ldots+C_{k} z_{k}\left(\frac{z_{k}}{z_{0}}\right)^{n}}{C_{0}+C_{1}\left(\frac{z_{1}}{z_{0}}\right)^{n}+\ldots+C_{k}\left(\frac{z_{k}}{z_{0}}\right)^{n}}
$$

Suppose $\left|z_{0}\right|>\left|z_{i}\right|$ for $i=1, \ldots, k$. Then, $\left(\frac{z_{i}}{z_{0}}\right)^{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\frac{a_{n+1}}{a_{n}} \rightarrow z_{0}$, provided $C_{0} \neq 0$. Thus, it remains to be shown that the coefficients C_{0}, \ldots, C_{k} are not zero and φ_{k}, ϕ_{k} are greater than the absolute values of the remaining roots of p_{k} and P_{k}.

The coefficients C_{0}, \ldots, C_{k} satisfy the system of linear equations

$$
\left[\begin{array}{cccc}
z_{0} & z_{1} & \cdots & z_{k} \\
z_{0}^{2} & z_{1}^{2} & \cdots & z_{k}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
z_{0}^{k+1} & z_{1}^{k+1} & \cdots & z_{k}^{k+1}
\end{array}\right]\left[\begin{array}{c}
C_{0} \\
C_{1} \\
\vdots \\
C_{k}
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] .
$$

Let A be the square matrix on the left. By Cramer's rule we have

$$
C_{i}=\frac{1}{\operatorname{det} A}\left|\begin{array}{ccccc}
z_{0} & \cdots & 1 & \cdots & z_{k} \\
z_{0}^{2} & \cdots & 1 & \cdots & z_{k}^{2} \\
\vdots & & \vdots & & \vdots \\
z_{0}^{k+1} & \cdots & 1 & \cdots & z_{k}^{k+1}
\end{array}\right| .
$$

The Vandermonde determinant in the numerator is not zero because the roots are all distinct and 1 is neither a root of p_{k} nor of P_{k}.

Finally, let $z=x+i y \neq \varphi_{k}$ be a root of p_{k} and denote its absolute value by $r=|z|=$ $\sqrt{x^{2}+y^{2}}$. By Proposition 1.1, z is either the unique negative root (for odd k) or else $y \neq 0$; in both cases $x<r$. Taking the absolute value of $p_{k}(z)=0$ we have:

$$
|z|^{k+1}=|z+1|=\sqrt{(x+1)^{2}+y^{2}}<\sqrt{x^{2}+y^{2}+2 r+1} .
$$

Equivalently, $r^{k+1}<\sqrt{r^{2}+2 r+1}=r+1$, i.e. $p_{k}(r)<0$. The polynomial p_{k} is strictly increasing on $[1,+\infty)$ and $p_{k}\left(\varphi_{k}\right)=0$. Therefore, $p_{k}(x)>0$ for all $x>\varphi_{k}$ and we conclude $r<\varphi_{k}$. Similarly, if $z=x+i y \neq \phi_{k}$ is a root of P_{k}, we get

$$
1=|z| \cdot|z-1|^{k}=r{\sqrt{r^{2}-2 x+1}}^{k}>r(r-1)^{k} \Longrightarrow P_{k}(r)<0 .
$$

Again, $P_{k}(x)>0$ for all $x>\phi_{k}$ and $r<\phi_{k}$ follows. This completes the proof.
Corollary 2.2: $\lim _{n \rightarrow \infty} \frac{f_{n+k}^{(k)}}{f_{n}^{(k)}}=\phi_{k}$.
Proof: By the preceding theorem, consecutive ratios of the k-th lower Fibonacci sequences tend to φ_{k} so we have

$$
\frac{f_{n+k}^{(k)}}{f_{n}^{(k)}}=\frac{f_{n+k}^{(k)}}{f_{n+k-1}^{(k)}} \cdot \frac{f_{n+k-1}^{(k)}}{f_{n+k-2}^{(k)}} \cdots \frac{f_{n+1}^{(k)}}{f_{n}^{(k)}} \rightarrow \varphi_{k} \cdot \varphi_{k} \cdots \varphi_{k}=\left(\varphi_{k}\right)^{k}=\phi_{k} .
$$

Just like ordinary Fibonacci numbers, their upper "cousins" can be expressed as sums of binomial coefficients. We will need the following lemma.
Lemma 2.3: For any $k \leq l \leq m, \sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\binom{m-j}{l}=\binom{m-k}{l-k}$.
Proof: Let M be a set of m elements and suppose a subset of k elements is given. The right side enumerates all l-element subsets of M containing the given k elements. On the other hand, $\binom{k}{j}\binom{m-j}{l}$ is the number of l-subsets avoiding at least j of the k given elements. The sum on the left equals the binomial coefficient on the right by inclusion-exclusion.
Proposition 2.4: $F_{n+1}^{(k)}=\sum_{i \geq 0}\binom{n-i}{k i}$
Proof: Obviously, $\sum_{i \geq 0}\binom{n-i}{k i}=1$ for all $n \leq k$. The recurrence for the upper Fibonacci numbers can be rewritten as

$$
\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} F_{n+k+1-j}^{(k)}=F_{n}^{(k)}
$$

By substituting appropriate sums of binomial coefficients we get

$$
\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \sum_{i \geq 0}\binom{n+k-j-i}{k i}=\sum_{i \geq 0}\binom{n-1-i}{k i}=\sum_{i \geq 1}\binom{n-i}{k(i-1)} .
$$

Equivalently,

$$
\sum_{i \geq 1}\left[\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\binom{n+k-i-j}{k i}-\binom{n-i}{k(i-1)}\right]=0
$$

The terms in the square brackets are all zero by Lemma 2.3 for $m=n+k-i$ and $l=k i$. Therefore, the considered sums satisfy the the initial conditions and the recurrence for the upper Fibonacci sequence.

Members of the Lamé sequences can also be expressed as sums of binomial coefficients [11]:

$$
L_{n+1}^{(k)}=\sum_{i=0}^{\lfloor n / k\rfloor}\binom{n-k i}{i} .
$$

It would be of interest to find a similar formula for the lower Fibonacci sequences and to generalize other known properties of Fibonacci numbers.

REFERENCES

[1] J. Aarts, R. Fokkink and G. Kruijtzer. "Morphic Numbers." Nieuw Arch. Wiskd. (5) 2 (2001): 56-58.
[2] W. Adams and D. Shanks. "Strong Primality Tests that Are Not Sufficient." Math. Comp. 39.159 (1982): 255-300.
[3] R. Austin and R. Guy. "Binary Sequences Without Isolated Ones." The Fibonacci Quarterly 16.1 (1978): 84-86.
[4] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse and J.P. Schreiber. "Pisot and Salem Numbers." Birkhäuser Verlag, Basel, 1992.
[5] S. Bradley. "A Geometric Connection Between Generalized Fibonacci Sequences and Nearly Golden Sections." The Fibonacci Quarterly 38.2 (2000): 174-179.
[6] P. Chinn and S. Heubach. "Integer Sequences Related to Compositions Without 2's." J. Integer Seq. 6 (2003): article 03.2.3.
[7] P.G. Engstrom. "Sections, Golden and Not So Golden." The Fibonacci Quarterly $\mathbf{2 6 . 4}$ (1988): 118-127.
[8] S. Falcon. "A Simple Proof of an Interesting Fibonacci Generalization." Internat. J. Math. Ed. Sci. Tech. 35.2 (2004): 259-261.
[9] D.H. Fowler. "A Generalization of the Golden Section." The Fibonacci Quarterly $\mathbf{2 0 . 2}$ (1982): 146-158.
[10] G.A. Moore. "A Fibonacci Polynomial Sequence Defined by Multidimensional Continued Fractions; and Higher-Order Golden Ratios." The Fibonacci Quarterly 31.4 (1993): 354364.
[11] N.J.A. Sloane. "The On-Line Encyclopedia of Integer Sequences." http://www.research.att.com/~njas/sequences/.
[12] A. Stakhov. "The Golden Section and Modern Harmony Mathmatics." Applications of Fibonacci numbers, Vol. 7 (Graz, 1996), Kluwer Academic Publishers, 1998, pp. 393-399.
[13] I. Stewart. "Tales of a Neglected Number." Scientific American 274 (June 1996): 102103.
[14] M. de Villiers. "A Fibonacci Generalization and its Dual." Internat. J. Math. Ed. Sci. Tech. 31.3 (2000): 447-477.

AMS Classification Numbers: 11B39

国必

