SUMS OF PRODUCTS OF BERNOULLI NUMBERS OF THE SECOND KIND

Ming Wu

Department of Mathematics, JinLing Institute of Technology, Nanjing 210001, People's Republic of China e-mail: mingwu1996@yahoo.com.cn

Hao Pan

Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, People's Republic of China e-mail: haopan79@yahoo.com.cn
(Submitted June 2006-Final Revision April 2007)

ABSTRACT

The Bernoulli numbers of the second kind b_{n} are defined by

$$
\sum_{n=0}^{\infty} b_{n} t^{n}=\frac{t}{\log (1+t)} .
$$

In this paper, we give an explicit formula for the sum

$$
\sum_{\substack{j_{1}+j_{2}+\cdots+j_{N}=n \\ j_{1}, j_{2}, \ldots, j_{N} \geqslant 0}} b_{j_{1}} b_{j_{2}} \cdots b_{j_{N}} .
$$

We also establish a q-analogue for

$$
\sum_{k=0}^{n} b_{k} b_{n-k}=-(n-1) b_{n}-(n-2) b_{n-1} .
$$

The Bernoulli numbers B_{n} are defined by

$$
\sum_{n=0}^{\infty} \frac{B_{n}}{n!} t^{n}=\frac{t}{e^{t}-1} .
$$

It is well-known (cf. [5]) that for $n>1$

$$
\begin{equation*}
\sum_{j=1}^{n-1}\binom{2 n}{2 j} B_{2 j} B_{2 n-2 j}=-(2 n+1) B_{2 n} . \tag{1}
\end{equation*}
$$

As a generalization of (1), in [2] Dilcher proved that for $n>N / 2$

$$
\begin{array}{r}
\sum_{\substack{j_{1}+j_{2}+\ldots+j_{N}=n \\
j_{1}, j_{2}, \ldots, j_{N} \geqslant 0}}\binom{2 n}{2 j_{1}, 2 j_{2}, \ldots, 2 j_{N}} B_{2 j_{1}} B_{2 j_{2}} \cdots B_{2 j_{N}} \\
 \tag{2}\\
=\frac{(2 n)!}{(2 n-N)!} \sum_{k=0}^{\lfloor(N-1) / 2\rfloor} c_{k}^{(N)} \frac{B_{2 n-2 k}}{2 n-2 k},
\end{array}
$$

where the array $\left\{c_{k}^{(N)}\right\}$ is given by $c_{0}^{(1)}=1$ and

$$
c_{k}^{(N+1)}=-\frac{1}{N} c_{k}^{(N)}+\frac{1}{4} c_{k-1}^{(N-1)}
$$

with $c_{k}^{(N)}=0$ for $k<0$ and $k>\lfloor(N-1) / 2\rfloor$.
On the other hand, the Bernoulli numbers of the second kind b_{n} are given by

$$
\sum_{n=0}^{\infty} b_{n} t^{n}=\frac{t}{\log (1+t)}
$$

And we set $b_{k}=0$ whenever $k<0$. It is easy to check that

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{(-1)^{k} b_{n-k}}{k+1}=\delta_{n, 0} \tag{3}
\end{equation*}
$$

where $\delta_{n, 0}=1$ or 0 according to whether $n=0$ or not. In [3], Howard used the Bernoulli numbers of the second kind to give an explicit formula for degenerate Bernoulli numbers. And some 2-adic congruences of b_{n} have been investigated by Adelberg in [1].

In this short note, we shall give an analogue of (2) for the Bernoulli numbers of the second kind. Define an array of polynomials $\left\{a_{k}^{(N)}(x)\right\}$ by

$$
a_{0}^{(1)}(x)=1, \quad a_{k}^{(N)}(x)=0 \text { for } k<0 \text { and } k \geqslant N
$$

and

$$
a_{k}^{(N)}(x)=-\frac{1}{N-1}\left((x-N+1) a_{k}^{(N-1)}(x)+(x-N) a_{k-1}^{(N-1)}(x-1)\right)
$$

if $N>k \geqslant 0$.
Theorem 1: Let $N=1$ be an integer. Then for any non-negative integer n

$$
\begin{equation*}
\sum_{\substack{j_{1}+j_{2}+\cdots+j_{N}=n \\ j_{1}, j_{2}, \ldots, j_{N} \geqslant 0}} b_{j_{1}} b_{j_{2}} \cdots b_{j_{N}}=\sum_{k=0}^{N-1} a_{k}^{(N)}(n) b_{n-k} \tag{4}
\end{equation*}
$$

Proof: Let:

$$
s_{N}(n)=\sum_{\substack{j_{1}+j_{2}+\cdots+j_{N}=n \\ j_{1}, j_{2}, \ldots, j_{N} \geqslant 0}} b_{j_{1}} b_{j_{2}} \cdots b_{j_{N}}
$$

Clearly $s_{1}(n)=b_{n}$, whence (4) holds for $N=1$. Now we make an induction on N. For arbitrary power series $f(t)$, let $\left[t^{n}\right] f(t)$ denot the coefficient of t^{n} in $f(t)$. It is easy to see that

$$
\frac{t^{N}}{\log ^{N}(1+t)}=\left(\sum_{j=0}^{\infty} b_{j} t^{j}\right)^{N}=\sum_{n=0}^{\infty} s_{N}(n) t^{n}
$$

Therefore

$$
\begin{aligned}
s_{N+1}(n) & =\left[t^{n}\right] \frac{t^{N+1}}{\log ^{N+1}(1+t)}=\left[t^{n-N-1}\right] \frac{1}{\log ^{N+1}(1+t)} \\
& =-\left[t^{n-N-1}\right]\left(\frac{(1+t)}{N} \frac{d}{d t}\left(\frac{1}{\log ^{N}(1+t)}\right)\right) \\
& =-\left[t^{n-N-1}\right] \frac{1}{N} \frac{d}{d t}\left(\frac{1}{\log ^{N}(1+t)}\right)-\left[t^{n-N-2}\right] \frac{1}{N} \frac{d}{d t}\left(\frac{1}{\log ^{N}(1+t)}\right) .
\end{aligned}
$$

Now

$$
\frac{d}{d t}\left(\frac{1}{\log ^{N}(1+t)}\right)=\frac{d}{d t}\left(\sum_{n=0}^{\infty} s_{N}(n) t^{n-N}\right)=\sum_{n=0}^{\infty}(n-N) s_{N}(n) t^{n-N-1}
$$

Thus by the induction hypothesis on N,

$$
\begin{aligned}
s_{N+1}(n) & =-\frac{1}{N}\left((n-N) s_{N}(n)+(n-N-1) s_{N}(n-1)\right) \\
& =-\frac{n-N}{N} \sum_{k=0}^{N-1} a_{k}^{(N)}(n) b_{n-k}-\frac{n-N-1}{N} \sum_{k=0}^{N-1} a_{k}^{(N)}(n-1) b_{n-1-k} \\
& =-\frac{n-N}{N} \sum_{k=0}^{N-1} a_{k}^{(N)}(n) b_{n-k}-\frac{n-N-1}{N} \sum_{k=1}^{N} a_{k-1}^{(N)}(n-1) b_{n-k} \\
& =-\frac{1}{N} \sum_{k=0}^{N}\left((n-N) a_{k}^{(N)}(n)+(n-N-1) a_{k-1}^{(N)}(n-1)\right) b_{n-k} \\
& =\sum_{k=0}^{N} a_{k}^{(N+1)}(n) b_{n-k} .
\end{aligned}
$$

We are done.
For example, substituting $N=2,3$ in (4), we obtain that

$$
\begin{equation*}
s_{2}(n)=-(n-1) b_{n}-(n-2) b_{n-1}, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{3}(n)=\frac{1}{2}(n-1)(n-2) b_{n}+\frac{1}{2}(n-2)(2 n-5) b_{n-1}+\frac{1}{2}(n-3)^{2} b_{n-2} . \tag{6}
\end{equation*}
$$

For arbitrary integer n, let

$$
[n]_{q}=\frac{1-q^{n}}{1-q} .
$$

We say that $[n]_{q}$ is a q-analogue of the integer n since $\lim _{q \rightarrow 1}[n]_{q}=n$. Then $[1]_{q}=1$ and $[n-a]_{q}=[n]_{q}-q^{n-a}[a]_{q}$. Define the q-logarithm function by

$$
\log _{q}(1+t)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} t^{n}}{[n]_{q}}
$$

which is convergent for $|t|<1$. Also define a q-analogue of the Bernoulli numbers of the second kind by

$$
\sum_{n=0}^{\infty} b_{n}(q) t^{n}=\frac{t}{\log _{q}(1+t)}
$$

Clearly we get the q-analogue of (3)

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{(-1)^{k} b_{n-k}(q)}{[k+1]_{q}}=\delta_{n, 0} . \tag{7}
\end{equation*}
$$

Now we can give a q-analogue of (5).
Theorem 2: For any integer $n \geqslant 0$, we have

$$
\begin{equation*}
\sum_{k=0}^{n} q^{k-1} b_{k}(q) b_{n-k}(q)=-[n-1]_{q} b_{n}(q)-[n-2]_{q} b_{n-1}(q) \tag{8}
\end{equation*}
$$

where we set $b_{k}(q)=0$ if $k<0$.
Proof: We make an induction on n. When $n=0$, noting that $[-1]_{q}=-q^{-1}$ and $b_{0}(q)=1$ by (7), so both sides of (8) coincide with q^{-1}. Now assume that $n>0$ and (8) holds for smaller values of n. In view of (7), we have

$$
b_{n-k}(q)=-\sum_{j=1}^{n-k} \frac{(-1)^{j} b_{n-k-j}(q)}{[j+1]_{q}}
$$

when $k<n$. Then

$$
\begin{aligned}
\sum_{k=0}^{n} & q^{k-1} b_{k}(q) b_{n-k}(q) \\
& =q^{n-1} b_{n}(q)-\sum_{k=0}^{n-1} q^{k-1} b_{k}(q) \sum_{j=1}^{n-k} \frac{(-1)^{j} b_{n-k-j}(q)}{[j+1]_{q}} \\
& =q^{n-1} b_{n}(q)-\sum_{j=1}^{n} \frac{(-1)^{j}}{[j+1]_{q}} \sum_{k=0}^{n-j} q^{k-1} b_{k}(q) b_{n-k-j}(q) \\
& =q^{n-1} b_{n}(q)+\sum_{j=1}^{n} \frac{(-1)^{j}}{[j+1]_{q}}\left([n-j-1]_{q} b_{n-j}(q)+[n-j-2]_{q} b_{n-j-1}(q)\right)
\end{aligned}
$$

where we apply the induction hypothesis in the last step. Now we know that

$$
\begin{aligned}
& -\sum_{j=1}^{n} \frac{(-1)^{j}}{[j+1]_{q}} \sum_{k=0}^{n-j} q^{k-1} b_{k}(q) b_{n-k-j}(q) \\
& \quad=\sum_{j=1}^{n} \frac{(-1)^{j}}{[j+1]_{q}}\left([n-j-1]_{q} b_{n-j}(q)+[n-j-2]_{q} b_{n-j-1}(q)\right) \\
& \quad=\sum_{j=1}^{n} \frac{(-1)^{j}}{[j+1]_{q}}\left(\left([n]_{q}-q^{n-j-1}[j+1]_{q}\right) b_{n-j}(q)+\left([n-1]_{q}-q^{n-j-2}[j+1]_{q}\right) b_{n-j-1}(q)\right) \\
& \quad=[n]_{q} \sum_{j=1}^{n} \frac{(-1)^{j} b_{n-j}(q)}{[j+1]_{q}}+[n-1]_{q} \sum_{j=1}^{n-1} \frac{(-1)^{j} b_{n-j-1}(q)}{[j+1]_{q}}-\sum_{j=1}^{n}(-1)^{j} q^{n-j-1} b_{n-j}(q) \\
& -\sum_{j=1}^{n-1}(-1)^{j} q^{n-j-2} b_{n-j-1}(q) \\
& \quad=-[n]_{q} b_{n}(q)-[n-1]_{q} b_{n-1}(q)-\sum_{j=1}^{n}(-1)^{j} q^{n-j-1} b_{n-j}(q)+\sum_{j=2}^{n}(-1)^{j} q^{n-j-1} b_{n-j}(q) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{k=0}^{n} q^{k-1} b_{k}(q) b_{n-k}(q) & =q^{n-1} b_{n}(q)-[n]_{q} b_{n}(q)-[n-1]_{q} b_{n-1}(q)+q^{n-2} b_{n-1}(q) \\
& =-[n-1]_{q} b_{n}(q)-[n-2]_{q} b_{n-1}(q) .
\end{aligned}
$$

Remark: A q-analogue of (1) has been given by Satoh in [2].

ACKNOWLEDGMENT

We are grateful to the anonymous referee for his/her valuable comments on this paper. We also thank our advisor, Professor Zhi-Wei Sun, for his helpful suggestions.

REFERENCES

[1] A. Adelberg. "2-adic Congruences of Nölund Numbers and of Bernoulli Numbers of the Second Kind." J. Number Theory 73 (1998): 47-58.
[2] K. Dilcher. "Sums of Products of Bernoulli Numbers." J. Number Theory 60 (1996): 23-41.
[3] F. T. Howard. "Explicit Formulas for Degenerate Bernoulli Numbers." Discrete Math. 162 (1996): 175-185.
[4] J. Satoh. "Sums of Products of Two q-Bernoulli Numbers." J. Number Theory 74 (1999): 173-180.
[5] R. Sitaramachandrarao and B. Davis. "Some Identities Involving the Riemann Zetafunction, II." Indian J. Pure Appl. Math. 17 (1986): 1175-1186.

AMS Classification Numbers: 11B68, 05A30, 11B65

必必

