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Abstract. Second order linear homogeneous recurrence relations with coefficients in a
finite field or in the integers modulo of an ideal have been the subject of much study (see for
example [1, 2, 4, 5, 6, 7, 8, 9]). This paper extends many of these results to finite rings. In
the first part of this paper we develop polynomials which generate purely periodic sequences
over any finite ring, R. We then use these polynomials with coefficients in R to establish
bounds on the period of these sequences.

1. Introduction

Throughout this paper R is a finite commutative ring with identity. We assume that
a ring and its subrings share the same identity. Let Z denote the integers, N denote the
nonnegative integers, and Z+ denote the positive integers.

A sequence s = {s0, s1, . . .} of elements in R is purely periodic with period n ∈ Z+, if
n is the smallest positive integer with sn+i = si for all i ∈ N. If s is purely periodic with
period n then s is said to be uniformly distributed if for every r ∈ R, the cardinality of
{i ∈ N|si = r, 0 ≤ i ≤ n− 1} equals n divided by the order of R.

For n ∈ Z+ we call s an nth order linear homogeneous recurrence relation if there exist
a1, . . . , an ∈ R with an 6= 0 such that

si+n = ansi + an−1si+1 + · · ·+ a1si+n−1

for all i ∈ N.
The aim of this section is to establish a relationship between purely periodic nth order

linear homogeneous recurrence relations and the coefficients of certain polynomials. In the
next theorem we use the division algorithm to create an nth order linear recurrence.

Theorem 1.1. Let f(x) = anxn + · · ·+ a1x− 1 ∈ R[x] where n ∈ Z+ and an 6= 0. Suppose
that there exists h(x) ∈ R[x] with degree at most n − 1 and m ∈ Z+ such that m ≥ n and
f(x) divides h(x) · (xm − 1) in R[x]. Now let

∑m−1
j=0 cjx

j ∈ R[x] such that h(x) · (xm − 1) =

(
∑m−1

j=0 cjx
j) · f(x) and define s = {s0, s1, . . .} as the sequence given by si = cj where i ∼= j

modulo m. Then s is a purely periodic nth order linear recurrence given by

si+n = ansi + an−1si+1 + · · ·+ a1si+n−1

for all i ∈ N.

Proof. Let i ∈ N and let g(x) =
∑m−1

j=0 cjx
j. Note that f(x) · g(x) = h(x) · (xm − 1) and

g(x)xmk = smkx
mk + · · · + sm(k+1)−1x

m(k+1)−1. Use the division algorithm to write i + n as
mq + r where q, r ∈ Z and 0 ≤ r < m.
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Now

f(x) · (sqmxqm + sqm−1x
qm−1 + · · ·+ s1x + s0)

= f(x) · (xqmg(x) + x(q−1)mg(x) + · · ·+ g(x))

= xqmf(x)g(x) + x(q−1)mf(x)g(x) + · · ·+ f(x)g(x)

= xqmh(x)(xm − 1) + x(q−1)mh(x)(xm − 1) + · · ·+ h(x)(xm − 1)

= x(q+1)mh(x)− xqmh(x) + xqmh(x)− · · · − h(x)

= x(q+1)mh(x)− h(x).

Since 0 ≤ n− 1 < i + n < (q + 1)m, the coefficient of xi+n in the expansion above equals
zero. In other words,

(ansi + an−1si+1 + · · ·+ a1si+n−1 − si+n)xi+n = 0.

Hence, si+n = ansi + an−1si+1 + · · ·+ a1si+n−1 for all i ∈ N. This completes the proof. ¤

Example 1.2. Assume for the moment that R = Z/(5Z). Let f(x) = x2 + 4x − 1 and
h(x) = x. Note that f(x) divides x(x20 − 1) and

h(x) · (x20 − 1)

f(x)
=

20−1∑
j=0

cjx
j

= 0 + 1x + 4x2 + 2x3 + 2x4 + 0x5 + 2x6 + 3x7

+ 4x8 + 4x9 + 0x10 + 4x11 + 1x12 + 3x13 + 3x14

+ 0x15 + 3x16 + 2x17 + 1x18 + 1x19.

If we let s0 = 0, s1 = 1, and si+2 = si + 4si+1, then for all i ∈ N, si = cj where i is
congruent to j modulo 20. Note that this purely periodic sequence is uniformly distributed.

In Theorem 1.1 we took polynomials and produced a purely periodic sequence. In the next
theorem we reverse that process. The reader should note the similarity between this next
theorem and Theorem 6.25 on page 197 of Lidl and Niederreiter [4]. Although this result in
Lidl and Niederreiter is stated for finite fields, the proof actually works over more general
rings.

Theorem 1.3. Suppose s = {s0, s1, . . .} is a purely periodic nth order recurrence in R with
period m ≥ n. That is, there exist a1, . . . , an ∈ R with an 6= 0 such that, for all i ∈ N,

si+n = ansi + an−1si+1 + · · ·+ a1si+n−1.

Let

f(x) = anx
n + · · ·+ a1x− 1

and

h(x) =
n−1∑
j=0

−(ajs0 + aj−1s1 + · · ·+ a2sj−2 + a1sj−1 − sj)x
j.

Then h(x) · (xm − 1) = (
∑m−1

j=0 sjx
j) · f(x).
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Proof. Clearly the polynomials f(x)·∑m−1
j=0 sjx

j and h(x)·(xm−1) both have degree m+n−1.

It suffices to check that these polynomials are equal term by term. Let i ∈ {0, . . . ,m+n−1}.
Case 1 (i < n): In this case the coefficient of xi in f(x) ·∑m−1

j=0 sjx
j equals ais0+ai−1s1+

· · · + a2si−2 + a1si−1 − si which equals the coefficient of xi in −h(x). Since i < n < m, the
coefficient of xi in h(x) · (xm − 1) is equal to the coefficient of xi in −h(x).

Case 2 (n ≤ i ≤ m − 1): In this case the coefficient of xi in h(x) · (xm − 1) is equal
to zero, since the degree of h(x) is n − 1. The coefficient of xi in f(x) ·∑m−1

j=0 sjx
j equals

ansi−1+an−1si−n+1+an−2si−n+2+· · ·+a1si−1−si. This is also equal to zero by the recurrence
relation.

Case 3 (m ≤ i ≤ m+n−1): In this case the coefficient of xi in f(x) ·∑m−1
j=0 sjx

j equals

ansi−n + an−1si−n+1 + an−2si−n+2 + · · ·+ ai−m+1sm−1 equals −(ai−msm + ai−m−1sm+1 + · · ·+
a1si−1− si) (by the recurrence relation) equals −(ai−ms0 +ai−m−1s1 + · · ·+a1si−1−m− si−m)
(since s is periodic) equals the coefficient of xi in xm · h(x) equals the coefficient of xi in
(xm − 1) · h(x) (since n− 1 ≤ m ≤ i). ¤

2. Purely Periodic Second Order Linear Recurrences

Throughout this section let s = {s0, s1, . . .} be the sequence in R generated by second
order linear recurrence relation si+2 = a2si + a1si+1 for all i ∈ N where a1 ∈ R and a2 is a
unit in R. The polynomial g(x) = x2 − a1x− a2 is the characteristic polynomial associated
to this recurrence.

In this section we establish a formula for sn in terms of the roots of the characteristic
polynomial. We then use this formula to give an upper bound for the period of s.

Theorem 2.1. There exists a ring S which contains R as a subring, an element r1 ∈ S,
and an element r2 ∈ R[r1] such that

g(x) = x2 − a1x− a2 = (x− r1)(x− r2).

Proof. Let S = R[x]/(g(x)) and let r1 be the element x + (g(x)),∈ S. Note that R is a
subring of S and g(r1) = 0. By the division algorithm on page 158 of [3], there exists a
polynomial h(x) with coefficients in R[r1] and element c in R[r1] such that

g(x) = (x− r1)h(x) + c

in R[r1][x]. Plugging r1 into both sides of this equation and recalling that g(r1) = 0 yields
c = 0 and g(x) = (x − r1)h(x). Since g(x) is a monic polynomial of degree two and
(x− r1) is a monic polynomial of degree one, it follows that there exists r2 ∈ R[r1] such that
h(x) = (x− r2) and g(x) = (x− r1)(x− r2). ¤

Consider a ring S which contains R as a subring with elements r1, r2 ∈ S such that
g(x) = x2− a1x− a2 = (x− r1)(x− r2). Since r1r2 = −a2, and a2 was assumed to be a unit
in R, it follows that r1 and r2 are units in S. Now r1 is integral over R and thus by Theorem
5.3 on page 395 of [3], R[r1] is a finitely generated R module. This, along with the fact that
R is a finite ring, implies that the units of R[r1] form a finite group. We use |r1|, |r2| ∈ Z+

to denote the orders of r1 and r2 in this group. Hence, r
|r1|
1 = r

|r2|
2 = 1R.

Recall that g(x) = x2 − a1x − a2 is the characteristic polynomial corresponding to the
recurrence si+2 = a2si + a1si+1.
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Theorem 2.2. Let S be a ring which contains R as a subring and let r1, r2 ∈ S such that
g(x) = (x− r1)(x− r2). Then for n ≥ 1,

sn = s0r
n
1 + (s1 − s0r1)

n−1∑
j=0

rj
1r

n−j−1
2 .

Proof. We proceed by induction on n. If n = 1 then

s0r
1
1 + (s1 − s0r1)

0∑
j=0

rj
1r

n−j−1
2 = s0r

1
1 + (s1 − s0r1) = s1.

When n = 2 we have

s0r
2
1 + (s1 − s0r1)

2−1∑
j=0

rj
1r

2−j−1
2 = s0r

2
1 + (s1 − s0r1)(r1 + r2)

= (r1 + r2)s1 + s0(−r1r2)

= a1s1 + a2s0

= s2.

Now let k be an integer greater than 2 and assume that the equality holds for all integers
n greater than zero and less than k. We show the equality holds for n = k. Note that

sk = a1sk−1 + a2sk−2

= a1

(
s0r

k−1
1 + (s1 − s0r1)

k−1−1∑
j=0

rj
1r

k−1−j−1
2

)

+ a2

(
s0r

k−2
1 + (s1 − s0r1)

k−2−1∑
j=0

rj
1r

k−2−j−1
2

)

= (r1 + r2)
(
s0r

k−1
1 + (s1 − s0r1)

k−1−1∑
j=0

rj
1r

k−1−j−1
2

)

+ (−r1r2)
(
s0r

k−2
1 + (s1 − s0r1)

k−2−1∑
j=0

rj
1r

k−2−j−1
2

)

= r1

(
s0r

k−1
1 + (s1 − s0r1)

k−1−1∑
j=0

rj
1r

k−1−j−1
2

)

+ r2

(
s0r

k−1
1 + (s1 − s0r1)

k−1−1∑
j=0

rj
1r

k−1−j−1
2

)

+ (−r1r2)
(
s0r

k−2
1 + (s1 − s0r1)

k−2−1∑
j=0

rj
1r

k−2−j−1
2

)
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= s0r
k
1 + (s1 − s0r1)

k−1−1∑
j=0

rj+1
1 rk−1−j−1

2

+ s0r
k−1
1 r2 + (s1 − s0r1)

k−1−1∑
j=0

rj
1r

k−j−1
2

− s0r
k−1
1 r2 − (s1 − s0r1)

k−2−1∑
j=0

rj+1
1 rk−j−2

2

= s0r
k
1 + (s1 − s0r1)

(
rk−1
1 +

k−2∑
j=0

rj
1r

k−j−1
2

)

= s0r
k
1 + (s1 − s0r1)

k−1∑
j=0

rj
1r

k−j−1
2 .

¤

We did not use the fact that R is finite or the fact that a2 is a unit in the proof of the last
theorem. The result even holds when r1− r2 is a zero divisor. If we set r1 equal to r2 in the
last theorem we get our next result.

Corollary 2.3. Let S be a ring which contains R as a subring and let r ∈ S such that
g(x) = (x− r)2. Then for k ≥ 1,

sk = s0(1− k)rk + s1krk−1.

Write nR for the characteristic of the finite ring R.

Theorem 2.4. Let S be a ring which contains R as a subring and let r1, r2 ∈ S such that
g(x) = (x− r1)(x− r2). Let λ be the least common multiple or |r1| and |r2|. Then s is purely
periodic with period dividing λ · nR.

Proof. Let m = λ · nR and let k ∈ N. Then

sm+k = s0r
m+k
1 + (s1 − s0r1)

m+k−1∑
j=0

rj
1r

m+k−j−1
2

= s0r
m+k
1 + (s1 − s0r1)

m−1∑
j=0

rj
1r

m+k−j−1
2

+ (s1 − s0r1)
m+k−1∑

j=m

rj
1r

m+k−j−1
2

(where
m+k−1∑

j=m

rj
1r

m+k−j−1
2 = 0 if k = 0)

= s0r
m
1 rk

1 + (s1 − s0r1)r
m
1

k−1∑
j=0

rj
1r

k−j−1
2
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+ (s1 − s0r1)
m−1∑
j=0

rj
1r

m+k−j−1
2

= s0r
k
1 + (s1 − s0r1)

k−1∑
j=0

rj
1r

k−j−1
2

+ (s1 − s0r1)
m−1∑
j=0

rj
1r

m+k−j−1
2 ( since rλ

1 = 1)

= s0r
k
1 + (s1 − s0r1)

k−1∑
j=0

rj
1r

k−j−1
2 + (s1 − s0r1)

( λ−1∑
j=0

rj
1r

m+k−j−1
2

+
2λ−1∑

j=λ

rj
1r

m+k−j−1
2 + . . . +

m−1∑

j=λ(nR−1)

rj
1r

m+k−j−1
2

)

= s0r
k
1 + (s1 − s0r1)

k−1∑
j=0

rj
1r

k−j−1
2

+ (s1 − s0r1)
(
nR ·

λ−1∑
j=0

rj
1r

m+k−j−1
2

)
(since rλ

1 = rλ
2 = 1)

= s0r
k
1 + (s1 − s0r1)

k−1∑
j=0

rj
1r

k−j−1
2 = sk.

¤
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