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Abstract. A general combinatorial approach is presented for proving identities of the
form mfn =

∑
i∈Im

fn+i, where m is a nonnegative integer constant, n ≥ |min(Im)| is
an integer, Im is a set of nonconsecutive integers, and fn is the Fibonacci number Fn+1.
The approach involves counting phased square-domino tilings, as in the book Proofs that
Really Count by Benjamin and Quinn. Furthermore, for each proof of an identity of the form
mfn =

∑
i∈Im

fn+i, there is a corresponding isomorphic proof of the identity m =
∑

i∈Im
φi,

where φ is (1 +
√

5)/2.

1. Introduction

Benjamin and Quinn [1] in an exercise ask for a combinatorial approach to proving the
following system of identities (the Zeckendorf family identities [4]), in which fn−1 represents
the nth Fibonacci number (this is the combinatorial version of Fibonacci numbers, with
f0 = f1 = 1 as opposed to F0 = 0 and F1 = 1 in the classical definition).

1fn = fn for n ≥ 0 (1.1)

2fn = fn+1 + fn−2 for n ≥ 2 (1.2)

3fn = fn+2 + fn−2 for n ≥ 2 (1.3)

4fn = fn+2 + fn + fn−2 for n ≥ 4 (1.4)

5fn = fn+3 + fn−1 + fn−4 for n ≥ 4 (1.5)

6fn = fn+3 + fn+1 + fn−4 for n ≥ 4 (1.6)

7fn = fn+4 + fn−4 for n ≥ 4 (1.7)

8fn = fn+4 + fn + fn−4 for n ≥ 4 (1.8)

9fn = fn+4 + fn+1 + fn−2 + fn−4 for n ≥ 4 (1.9)

10fn = fn+4 + fn+2 + fn−2 + fn−4 for n ≥ 4 (1.10)

11fn = fn+4 + fn+2 + fn + fn−2 + fn−4 for n ≥ 4 (1.11)

12fn = fn+5 + fn−1 + fn−3 + fn−6 for n ≥ 6 (1.12)

...

Benjamin and Quinn prove several of these identities, and recently Wood [4] has provided
proofs of several more. But in both cases, each proof has been handled as a special case. The
first goal of this paper is to present an approach based on counting phased square-domino
tilings, which leads to an algorithm similar to long division for generating and proving all such
identities. We will refer to this algorithm as the Golden Ratio Division (GRD) Algorithm.

Many thanks to Arthur Benjamin, Doron Zeilberger and Philip Matchett Wood for helpful comments.
Errors in the paper are my own.
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Benjamin and Quinn state (in the same exercise, without proof) moreover that:

The coefficients in the above formulas are the same as in the unique expansion
of positive integers in nonconsecutive integer powers of φ = (1 +

√
5)/2. For

example, 5 = φ3 + φ−1 + φ−4 and 6 = φ3 + φ1 + φ−4.

In other words, the coefficients correspond to the positions of the 1-digits in the binary-
encoded golden ratio base number system introduced by Bergman [2]. In Section 3.2, we
elaborate on this connection, showing how the combinatorially inspired algorithm can be
reinterpreted as an algorithm for directly generating these coefficients of φ. This leads to a
semi-combinatorial proof of the following theorem.

Theorem 1.1. For nonconsecutive integers a1 . . . ak, the following two statements are equiv-
alent:

mfn = fn+a1 + fn+a2 + · · ·+ fn+ak
(1.13)

m = φa1 + φa2 + · · ·+ φak . (1.14)

Although, the GRD Algorithm was developed for the purpose of establishing Theorem
1.1, it is in fact a practical algorithm. The algorithm is efficient because it is greedy: the
optimal value for each ai is determined before moving on to ai+1. In this way, it differs from
the non-deterministic procedure described by Bergman [2], which uses a global optimization
step to find optimal values for the coefficients.

In Section 2, we present the algorithm as an uninterpreted procedure, saving the two
interpretations of the algorithm for Section 3. The paper concludes with an appendix with
examples.

2. Golden Ratio Division Algorithm

We present the algorithm here by way of a couple of examples. First consider the case of
4. The algorithm begins with the following two steps, which we will refer to as the init-α
rule and the reduce-β rule. In this case, α is determined by the initial problem to be 4.

4
)
4 4

4
a)
4 4
fa fa−1

4− fa 4− fa−1

The goal now is to find the largest value for a such that the pair of numbers 4 − fa and
4 − fa−1 are nonnegative. The condition on nonnegativity will be refined shortly, but is
sufficient for now. Clearly the maximal value for a is 3, so we can apply the reduce-3 rule:

4
3)
4 4
3 2
1 2
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Now, as in normal long division, we move to the next column and repeat the process.
Before we can move to the next column, however, we need to bring the bottom pair of
numbers (1, 2) into columns 2 and 3. To do this we use the shift rule:

4
3)
4 4
3 2
1 2−−−−−→

3 1

The general form of the shift rule is:

a b−−−−−−−−−−−→
a + b a

After a few more steps, we terminate with zeros at the bottom:

4
3 2 1)
4 4
3 2
1 2−−−−−→

3 1
2 1
1 0−−−−−→

1 1
1 1
0 0

The output (3, 2, 1) is now interpreted by using a procedure which we will refer to as the
evaluation rule. 3 is in column 1, 2 is in column 2 and 1 is in column 3. Subtracting the
column numbers from the output, we get (3, 2, 1)− (1, 2, 3) = (2, 0,−2), which corresponds
to the right hand side in the identities 4fn = fn+2 + fn + fn−2 and 4 = φ2 + φ0 + φ−2.

As a second example, let’s try 7, starting off in the following way:

7
5)
7 7
8 5

–1 2

This, of course, violates the nonnegativity condition. We will see however that by repeated
application of the shift rule, the numbers at the bottom will eventually become positive. After
one shift, we get:

7
5)
7 7
8 5

–1 2−−−−−−→
1 –1
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Since the numbers at the bottom are still not nonnegative, we add a placeholder “x” to
the output, and try shifting one more time.

7
5 x)
7 7
8 5

–1 2−−−−−−→
1 –1−−−−−→

0 1

At this point, both of the numbers at the bottom are nonnegative, but there is still no
possible output value that can be added without going irretrievably negative. For example,
try the output value 0:

7
5 x 0)
7 7
8 5

–1 2−−−−−−→
1 –1−−−−−→

0 1
1 0

–1 1

No amount of shifting will ever save this dead end, so we back up and put another place-
holder in the third column.1

7
5 x x)
7 7
8 5

–1 2−−−−−−→
1 –1−−−−−→

0 1−−−−−→
1 0

Now we can terminate with the value 0.

7
5 x x 0)
7 7
8 5

–1 2−−−−−−→
1 –1−−−−−→

0 1−−−−−→
1 0
1 0
0 0

1Despite this backing up, the algorithm is still greedy. Once the maximum value for a particular column
is found, it is never again changed.
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Subtracting the column numbers, we get (5, 0) − (1, 4) = (4,−4), corresponding to the
identities 7fn = fn+4 + fn−4 and 7 = φ4 + φ−4.

2.1. Termination. Before turning to the interpretation of the algorithm, it is worth saying a
few words about termination. The algorithm alternates between making a sequence of shifts
and outputting the next term. Bergman [2] shows that numbers can be finitely represented
in the golden ratio base, so this alternating pattern can only repeat a finite number of times.
Shifting, however, is problematic, since shifting continues an indefinite number of times until
the two numbers involved are both positive. There is, however, an optimization that can
be used to determine whether a sequence of shifts will terminate with a positive output.
Consider starting with two numbers a and b. After one shift, this is a + b and a. After two
shifts, it is 2a + b and a + b, and after n shifts, it is fna + fn−1b and fn−1a + fn−2b. Since, in
the limit, the ratio of fn and fn−1 is φ, one can simply test whether φa + b is positive, and
if it is positive, the shifting will eventually terminate with two positive numbers, otherwise
shifting will lead to a negative result.2

3. Two Interpretations of the Algorithm

We turn now to the interpretation of the algorithm. Not surprisingly, identities as in (1.13)
can be understood combinatorially. However, since an irrational number is involved, identi-
ties as in (1.14) are more easily understood algebraically. Possibly the identities involving φ
could be interpreted as counting probabilities as in [1], but it seems unlikely that it would
lead to any extra insight.

3.1. Combinatorial Explanation of the Algorithm. There are numerous ways in which
the algorithm can be understood. We present here an explanation based on phased square-
domino tilings. A phased tiling is a tiling in which the initial tile is assigned a certain
number of phases (or colors) depending on its type. The combinatorial explanation for the
GRD algorithm is based on such phased tilings, starting from three combinatorial theorems.

Combinatorial Theorem 3.1. mfn counts the phased square domino tilings of length n
with m phases for an initial square, and m phases for an initial domino.

Proof. Every unphased tiling begins with a square or domino, so there is a one-to-m corre-
spondence between the phased and unphased tilings. ¤

Combinatorial Theorem 3.2. The number of phased tilings of length n with a phases for
an initial square and b phases for an initial domino is equal to the number of phased tilings
of length n− 1 with a + b phases for an initial square and a phases for an initial domino.

Proof. Let the phases for the length n tilings be labeled s1 . . . sa for the squares and d1 . . . db

for the dominoes. For the length n−1 tilings, let the phases for squares be labeled s1 . . . sa+b

and let the phases for the dominoes be labeled d1 . . . da. Then the initial tile sequences in

2This argument is only intended to to show that the algorithm terminates, and not to show a practical
optimization. In fact, the φ test makes no apparent difference with the author’s computer implementation,
and for paper and pencil calculation, the φ test is clearly undesirable.
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the length n tilings can be mapped to initial tiles in the n− 1 tilings in the following way:

s1s → s1 s1d → d1

...
...

sas → sa sad → da

d1 → sa+1

...

db → sa+b .

The mapping in each case reduces the length by one, and is clearly reversible. ¤
Combinatorial Theorem 3.3. The number of unphased square-domino tilings of length
n + m is equal to the number of phased tilings of length n with fm+1 phases for an initial
square and fm phases for an initial domino.

Proof. Consider the case whether or not the unphased n+m-tiling is breakable at cell m+1.
If it is breakable, then the tiling consists of a prefix of length m + 1 followed by a suffix
of length n − 1. Since there are fm+1 possible tilings for the prefix, these may be mapped
one-to-one onto a set of squares with fm+1 phases. Replacing the prefix of length m + 1 by
the corresponding phased square reduces the length of the tiling to n.

If the unphased n + m-tiling is not breakable at cell m + 1, then it consists of a prefix of
length m, followed by a domino covering cells m + 1 and m + 2, and ending with a suffix
of length n − 2. In this case there are fm possible tilings for the prefix, and these may be
mapped one-to-one onto a set of phases for the following domino. Replacing the prefix by
the corresponding phase to be placed on the domino again reduces the length of the tiling
to n. ¤

Combinatorial Theorem 3.2 is clearly the basis of the shift rule in the GRD algorithm,
and Combinatorial Theorem 3.1 is the basis of the initialization step. So, when we write

4
)
4 4

the leftmost 4 represents the 4 sets of length n square-domino tilings. By Combinatorial
Theorem 3.1, the number of such tilings is equal to the number of tilings of length n beginning
with a four-phased square, as indicated by the middle 4, plus number of tilings of length n
beginning with a four-phased domino, as indicated by the rightmost 4.

Now that we’ve represented the problem in terms of phased tilings, the issue is how to
count these tilings. Clearly the idea is to use Combinatorial Theorem 3.3, but a problem
arises here when the needed number of phases for squares and dominoes does not exactly
match fi+1 and fi, respectively, for some i. In this case, an error term or remainder needs
to be introduced. To illustrate the problem, consider the following identity relating Lucas
numbers to Fibonacci numbers.

Identity 3.4.

Ln = fn+1 − fn−1 + fn−2.
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Proof. Ln counts the phased tilings of length n with 1 phase for an initial square and 2 phases
for an initial domino. By Combinatorial Theorem 3.3, fn+1 counts the number of phased
tilings of length n with 2 phases for an initial square and 1 phase for an initial domino. So
in this case, we need 2 error terms: −fn−1 to compensate for overcounting the phases for
squares, and fn−2 to compensate for undercounting the phases for dominoes. ¤

The reader should be able to supply proofs for the following identities by following the
same pattern:

Identity 3.5.

Ln = fn + fn−2.

Identity 3.6.

Ln = fn+2 − 2fn−1.

Returning to our example with 4 phases for initial squares and 4 phases for initial domi-
noes, we may simulate these phases with a tiling of length n + 2. This is represented in the
following way, where the number 3 on the top line represents the length of prefix of the tiling
that is used to represent the various phases of an initial square:

4
3)
4 4
3 2
1 2

The remainder (1, 2) indicates that we have failed to count one of the phases for initial
squares and two of the phases for initial dominoes.

So at this point, we have the identity

4fn = fn+2 + remainder (3.1)

where remainder is the number of tilings of length n with one phase for an initial square
and two phases for an initial domino. By Combinatorial Theorem 3.2, we can equivalently
count the tilings of length n− 1 with three phases for an initial square and one phase for an
initial domino.

4
3)
4 4
3 2
1 2−−−−−→

3 1

And then the process repeats with tilings now of length n− 1 instead of n.
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3.2. Bergman-style Interpretation of the Algorithm. As indicated in Section 1, the
algorithm can also be interpreted as calculating the coefficients of φ in (1.14). In this case, it
is unclear how to provide a combinatorial proof, and so we rely instead upon known identities
involving φ. In particular, we need the following identity.

Identity 3.7.

φn = fn−1φ + fn−2.

For example, φ6 = 8φ + 5 is used below in the transition from line 3.3 to line 3.4, right
column, and φ4 = 3φ+2 is used for the same pair of lines in the left column. As can be seen,
this identity plays the role of Combinatorial Theorem 3.3 in the phased tiling interpretation.

It is possible to extend this identity for negative values of n [2], however for our purposes
this extension will not be needed. One special case of this identity is particularly useful,
as it will correspond to the shift rule, used below in the transition from 3.5 to 3.6 in both
columns.

Identity 3.8.

φ2 = φ + 1.

And now we have all we need to prove particular examples such as 4 = φ2 + φ0 + φ−2 or
7 = φ4 + φ−4.

4 =
4φ2

φ2
7 =

7φ2

φ2
(3.2)

=
4φ + 4

φ2
=

7φ + 7

φ2
(3.3)

=
φ4 + (φ + 2)

φ2
=

φ6 + (−φ + 2)

φ2
(3.4)

=
φ4 + φ2+2φ

φ

φ2
=

φ6 + −φ2+2φ
φ

φ2
(3.5)

=
φ4 + 3φ+1

φ

φ2
=

φ6 + φ−1
φ

φ2
(3.6)

=
φ4 + φ3+φ

φ

φ2
=

φ6 +
φ2−φ

φ

φ

φ2
(3.7)

= φ2 + φ0 + φ−2. =
φ6 +

1
φ

φ

φ2
(3.8)

=
φ6 +

φ0

φ

φ

φ2
(3.9)

= φ4 + φ−4. (3.10)

Clearly these derivations correspond point by point to the combinatorial arguments used to
prove identities as in (1.13). To be precise, we represent an application of the GRD algorithm
as a sequence of steps: init-α, reduce-β1, shiftk1 , . . . , reduce-βn, shiftkn , evaluation, where
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shiftki
refers to a sequence of ki shifts. The init-α step then corresponds to the following

equation:

α =
αφ2

φ2
=

αφ + α

φ2
. (3.11)

We will refer to the numerator αφ + α in (3.11) as the focus term. In general, the focus
term is the upper, rightmost term, as indicated in (3.12).

φβ1+1 +
φβ2+1+

focus term

. . .

φ

φ

φ2
. (3.12)

Both the reduce-β rule and the shift rule apply just to the focus term. The following
equivalence is used for reduce-βi

aφ + b = φβi+1 + ((a− fβi
)φ + (b− fβi−1

)). (3.13)

And the shift rule applies the equivalence in (3.14) to the focus term.

φk + (aφ + b) = φk +
aφ2 + bφ

φ
= φk +

(a + b)φ + a

φ
. (3.14)

Finally, the evaluation rule simply corresponds to using the law of exponents to reduce
the fractions. There is a slight complication here in that the φ at the very bottom is raised
to the power 2 instead of 1, but this is compensated for by the fact that each exponent βi is
increased by 1.

We now have all the pieces in place to prove Theorem 1.1.

Proof. We have seen that each application of the GRD algorithm corresponds to a pair
of proofs: a tiling proof of an identity of the form mfn = fn+a1 + fn+a2 + · · · + fn+ak

and an algebraic proof of m = φa1 + φa2 + · · · + φak . Both of the correspondences are
clearly reversible, so that there is a one-to-one correspondence between proofs of mfn =
fn+a1 + fn+a2 + · · ·+ fn+ak

and proofs of m = φa1 + φa2 + · · ·+ φak . ¤

4. Discussion

The primary result in this paper is the proof of Theorem 1.1. Thus, it is shown that there
is a one-to-one correspondence between proofs of mfn = fn+a1 +fn+a2 +· · ·+fn+ak

and proofs
of m = φa1 + φa2 + · · · + φak . There are, moreover, two bonus results. First, instances of
these equations are efficiently generated using the GRD algorithm. And second, the proofs
of the first identity type (the Zeckendorf family identities), are combinatorial, being based
on counting phased tilings.

A recent paper covering some of the same territory is that of Wood, who applies the
techniques described in [5] for automatically translating inductive proofs into enumerative
combinatorial proofs. This approach was successfully applied to generate proofs for the
identities (1-12). The approach is certainly ingenious, but also has the disadvantage that
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the machine-generated combinatorial proofs are exceedingly complex and unintuitive.3

This paper ends with an appendix with a small number of examples. It is, however, trivial
to generate a couple million more examples (interested readers should contact the author).
Such a list of examples is quite useful for exploring subfamilies of the Zeckendorf family
identities. There are quite a few identities that can be discovered and proved where m in
mfn is, to mention a few striking special cases, a Fibonacci number, a Lucas number, five
times a Fibonacci number or two times a Lucas number. As one example of an empirically
discoverable pattern, we leave the reader with the following identities (closely related to
A056854 in the Online Encyclopedia of Integer Sequences).

8fn = fn+4 + fn + fn−4

48fn = fn+8 + fn + fn−8

323fn = fn+12 + fn + fn−12

2208fn = fn+16 + fn + fn−16

15128fn = fn+20 + fn + fn−20

103683fn = fn+24 + fn + fn−24.

Appendix A. Examples

1fn = fn

1
1)
1 1
1 1
0 0

2fn = fn+1 + fn−2

2
2 0)
2 2
2 1

1
1
0

3fn = fn+2 + fn−2

3
3 0)
3 3
3 2

1
1
0

3Part of the extra complexity of Wood’s approach is due to the fact that his proofs specify a bijection,
whereas the proofs in this paper only show that sets of tilings are of equal size without specifying which tiling
is mapped to which other tiling. To turn the proofs in this paper into bijections would require imposing an
ordering on tilings, for example using the approach specified in [3].
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4fn = fn+2 + fn + fn−2

4
3 2 1)
4 4
3 2
1 2−−−−−→

3 1
2 1
1 0−−−−−→

1 1
1 1
0 0

5fn = fn+3 + fn−1 + fn−4

5
4 1 x 0)
5 5
5 3

2
1 1
1 –1−−−−−→

0 1
1
0

6fn = fn+3 + fn+1 + fn−4

6
4 3 x 0)
6 6
5 3
1 3−−−−−→

4 1
3 2
1 –1−−−−−→

0 1
1
0

7fn = fn+4 + fn−4

7
5 x x 0)
7 7
8 5

–1 2−−−−−−→
1 –1−−−−−→

0 1
1
0

8fn = fn+4 + fn + fn−4

8
5 2 x 0)
8 8
8 5

3
2 1
1 –1−−−−−→

0 1
1
0

9fn = fn+4 + fn+1 + fn−2 + fn−4

9
5 3 1 0)
9 9
8 5
1 4−−−−−→

5 1
3 2
2 –1−−−−−→

1 2
1 1

1
1
0
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10fn = fn+4 + fn+2 + fn−2 + fn−4

10
5 4 1 0)

10 10
8 5
2 5−−−−−→

7 2
5 3
2 –1−−−−−→

1 2
1 1

1
1
0

11fn = fn+4 + fn+2 + fn + fn−2 + fn−4

11
5 4 3 2 1)

11 11
8 5
3 6−−−−−→

9 3
5 3
4 0−−−−−→

4 4
3 2
1 2−−−−−→

3 1
2 1
1 0−−−−−→

1 1
1 1
0 0

12fn = fn+5 + fn−1 + fn−3 + fn−6

12
6 x 2 1 x 0)

12 12
13 8
–1 4−−−−−−→

3 –1−−−−−→
2 3
2 1

2
1 1
1 –1−−−−−→

0 1
1
0
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