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Abstract. Here, we prove that there are infinitely many Fibonacci numbers which are
Riesel numbers. We also show that there are infinitely many Fibonacci numbers which are
Sierpiński numbers.

1. Introduction

In 1960, W. Sierpiński (see [4]) showed that there are infinitely many odd positive integers
k such that 2nk + 1 is composite for all n. In 1962, J. Selfridge showed that k = 78557 is
a Sierpiński number. This is now believed to be the smallest Sierpiński number. As of the
writing of this paper, there are only 6 odd candidates k smaller than 78557 whose status
with respect to being Sierpiński or not remains to be decided (see [3]).

In a similar vein, a Riesel number is an odd positive integer k such that 2nk−1 is composite
for all nonnegative integers n. They were first investigated by H. Riesel [2] in 1956, four
years before Sierpiński’s paper. There are infinitely many such and it is believed that the
smallest Riesel number is 509203.

Typically, the way to find Sierpiński or Riesel numbers is the following. Assume that
(ai, bi, pi)

i=t
i=1 are triples of positive integers with the following properties:

(i) for each integer n there exists i ∈ {1, . . . , t} such that n ≡ ai (mod bi);
(ii) p1, . . . , pt are distinct prime numbers such that pi | 2bi − 1 for all i = 1, . . . , t.

Then one creates Sierpiński numbers k by imposing that

2aik ≡ −1 (mod pi) for i = 1, . . . , t. (1.1)

Since the primes pi are all odd for i = 1, . . . , t, it follows that for each i, the above congruence
(1.1) is solvable and puts k into a certain arithmetic progression modulo pi. The fact that the
congruences (1.1) are simultaneously solvable for all i = 1, . . . , t follows from the fact that
the primes p1, . . . , pt are distinct via the Chinese Remainder Lemma. Every odd positive
integer k in the resulting arithmetic progression has the property that 2nk + 1 is always a
multiple of one of the numbers pi for i = 1, . . . , t, and if k > max{pi : i = 1, . . . , t}, it follows
that 2nk + 1 can never be a prime.

Similarly, one creates Riesel numbers by taking odd numbers k such that 2aik ≡ 1
(mod pi). Again, all such numbers belong to a fixed arithmetic progression modulo 2p1 · · · pt,
and all but finitely many of them will have the property that 2nk − 1 is divisible by one
of the primes p1, . . . , pt for all nonnegative integers n, and exceeds the largest one of them,
therefore all such k are Riesel numbers.

Let (Fn)n≥0 be the sequence of Fibonacci numbers given by F0 = 0, F1 = 1 and Fn+2 =
Fn+1 +Fn for all n ≥ 0. In [1], Luca and Stănică showed that there exist infinitely many
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positive integers n such that Fn 6= pa + qb for prime powers pa and qb. Here, we use a similar
method and prove the following result.

Theorem 1.1.
(1) There are infinitely many Fibonacci numbers which are Riesel numbers.
(2) There are infinitely many Fibonacci numbers which are Sierpiński numbers.

2. The Proof of Theorem 1.1

Let (ai, bi, pi)
i=t
i=1 be a set of t triples satisfying conditions (i) and (ii) above. Let k be a

Sierpiński or Riesel number constructed using the above system by the procedure indicated
at the beginning of this note. Then k ≡ ε2−ai (mod pi) for all i = 1, . . . , t, where ε = −1
or 1 according to whether k is Sierpiński or Riesel, respectively. For a positive integer m let
h(m) be the period of the Fibonacci sequence modulo m, and for an integer x let

A(x,m) = {0 ≤ y ≤ h(m)− 1 : Fy ≡ x (mod m)}+ h(m)Z.

That is, A(x,m) is the set of all congruence classes y modulo h(m) such that Fy ≡ x
(mod m). In order for the number k above to be a Fibonacci number it is necessary that
the congruence k ≡ Fyi

(mod pi) has a solution yi for each i = 1, . . . , t. But note that the
set of solutions yi of the above congruence is precisely

A(ε2−ai , pi).

Thus, in order for some n to exist such that k can be taken to be of the form Fn, it is
necessary and sufficient that

A =
t⋂

i=1

A(ε2−ai , pi) 6= ∅.

Finally, since Fn must also be odd, the above nonempty set of arithmetic progressions should
contain a number which is not a multiple of 3.

Armed with these facts, we are ready to prove our theorem.

2.1. The Riesel Case. We start with the Riesel case, since for it our proof is simpler.
We take t = 7 and

(ai, bi)
i=7
i=1 = ((0, 2), (0, 3), (1, 4), (11, 12), (7, 36), (19, 36), (31, 36),

and we get that (i) above is fulfilled. Indeed, every integer is congruent either to 0 (mod 2), or
to 0 (mod 3), or to 1 (mod 4), or to 11 (mod 12), or to 7 (mod 12), and in this last case it is
congruent to either 7, 19, or 31 modulo 36. We now take (p1, . . . , p7) = (3, 7, 5, 13, 73, 37, 19)
and note that condition (ii) above is fulfilled. It is easy to check that (h(p1), . . . , h(p7)) =
(8, 16, 20, 28, 148, 76, 18). Furthermore, it is also easy to see that

A(2−a1 , p1) = A(1, 3) = {1, 2, 7} (mod 8),

A(2−a2 , p2) = A(1, 7) = {1, 2, 6, 15} (mod 16),

A(2−a3 , p3) = A(3, 5) = {4, 6, 7, 13} (mod 20),

A(2−a4 , p1) = A(2, 13) = {3, 25} (mod 28),

A(2−a5 , p5) = A(4, 73) = {53, 95} (mod 148),

A(2−a6 , p6) = A(18, 37) = {10, 15, 28, 61} (mod 76),

A(2−a7 , p7) = A(13, 19) = {7, 11} (mod 18).
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One checks now that n ≡ 1807873 (mod 3543120) is odd and belongs to all A(2−ai , pi) for
i = 1, . . . , 7. Thus, for such n, the number Fn is a Riesel number.

2.2. The Sierpiński Case. For the Sierpiński case, we take t = 9 and

(ai, bi)
i=9
i=1 = (1, 2), (2, 4), (4, 8), (8, 16), (16, 32), (32, 64), (0, 192),

(64, 192), (128, 192).

Indeed, every number is either congruent to 1 (mod 2), or 2 (mod 4), or 4 (mod 8), or
8 (mod 16), or 16 (mod 32), or 32 (mod 64), or 0 (mod 64), and in this last case it is
congruent to either 0, or 64, or 128 modulo 192. We take

(pi)
9
i=1 = (3, 5, 17, 257, 65537, 641, 13, 673, 193),

and observe that

(h(pi))
i=9
i=1 = (8, 20, 36, 516, 14564, 640, 28, 1348, 388).

Furthermore,

A(−2−a1 , p1) = A(1, 3) = {1, 2, 7} (mod 8),

A(−2−a2 , p2) = A(1, 5) = {1, 2, 8, 19} (mod 20),

A(−2−a3 , p3) = A(1, 17) = {1, 2, 16, 35} (mod 36),

A(−2−a4 , p4) = A(1, 257) = {1, 2, 256, 515} (mod 516),

A(−2−a5 , p5) = A(1, 65537) = {1, 2, 7280, 14563} (mod 14564),

A(−2−a6 , p6) = A(1, 641) = {1, 2, 318, 639} (mod 640),

A(−2−a7 , p7) = A(12, 13) = {13, 15, 16, 26} (mod 28),

A(−2−a8 , p8) = A(256, 673) = {53, 1295} (mod 1348),

A(−2−a9 , p9) = A(109, 193) = {109, 279} (mod 388).

The least common multiple of the above moduli is

M = 27 · 32 · 5 · 7 · 11 · 43 · 97 · 331 · 337 = 206353240410240.

Furthermore, if n ≡ 20808199653121 (mod M), then n ∈
9⋂

i=1

A(−2−ai , pi). This shows that

there exist infinitely many Fibonacci numbers which are also Sierpiński numbers.
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