COLLECTIONS OF MUTUALLY DISJOINT CONVEX SUBSETS OF A TOTALLY ORDERED SET

TYLER CLARK AND TOM RICHMOND

Abstract

We present a combinatorial proof of an identity for $F_{2 n+1}$ by counting the number of collections of mutually disjoint convex subsets of a totally ordered set of n points. We discuss how the problem is motivated by counting certain topologies on finite sets.

Theorem. Given a totally ordered set X of n points, the number $C(n)$ of collections of mutually disjoint convex subsets of X is given by

$$
C(n)=1+\sum_{p=1}^{n} \sum_{j=1}^{p}\binom{n-p+j}{j}\binom{p-1}{j-1}=F_{2 n+1} .
$$

Proof. For any natural number k, let \underline{k} denote the set $\{1,2, \ldots, k\}$ with the usual total order $1<2<\cdots<k$. Note that a convex subset of \underline{k} is simply an interval in \underline{k}. Suppose \mathcal{C} is a collection of mutually disjoint convex subsets of $X=\underline{n}$. We will call the members of \mathcal{C} blocks. If \mathcal{C} has j blocks $(j=0, \ldots, n)$ and $|\cup \mathcal{C}|=p$, these p elements may be divided into j convex blocks in $\binom{p-1}{j-1}$ ways by inserting $j-1$ dividers into the $p-1$ gaps between the p points. Now we may totally order the $n-p$ points and j blocks, by choosing which of the $n-p+j$ items will be blocks, in $\binom{n-p+j}{j}$ ways. Summing as p goes from 1 to n and as j goes from 1 to p, and adding the one exceptional case corresponding to $j=0$, we have

$$
\begin{equation*}
C(n)=1+\sum_{p=1}^{n} \sum_{j=1}^{p}\binom{n-p+j}{j}\binom{p-1}{j-1} \tag{1}
\end{equation*}
$$

We may also find a recursive formula for $C(n)$. For any collection \mathcal{C} of mutually disjoint convex subsets of \underline{n}, consider the point $n \in \underline{n}$. Now $n \notin \bigcup \mathcal{C}$ if and only if \mathcal{C} is one of the $C(n-1)$ collections of mutually disjoint convex subsets of $n-1$. Furthermore, $n \in$ $\{j+1, \ldots, n\} \in \mathcal{C}$ where, for now, $j \in\{1,2, \ldots, n-1\}$, if and only if $\mathcal{C} \backslash\{\{j+1, \ldots, n\}\}$ is one of the $C(j)$ collections of mutually disjoint convex subsets of j. If $j=0$, that is, if $n \in\{1,2, \ldots, n\} \in \mathcal{C}$, then $\mathcal{C}=\{\underline{n}\}$ is the unique acceptable collection, and for this reason we adopt the convention that $C(0)=1$. Now summing over all cases $n \notin \bigcup \mathcal{C}$ and $n \in\{j+1, \ldots, n\} \in \mathcal{C}$ for $j=0,1, \ldots, n-1$, we have

$$
\begin{equation*}
C(n)=C(n-1)+\sum_{j=0}^{n-1} C(j) \tag{2}
\end{equation*}
$$

From either formula (1) or (2), we find the initial values of the sequence $\{C(n)\}_{n=0}^{\infty}$ to be $1,2,5,13,34,89, \ldots$, which agree with the values of $F_{2 n+1}$. Suppose $C(n)=F_{2 n+1}$ for $n=1,2, \ldots, k-1$. From the recurrence formula (2) we have

$$
C(k)=F_{2 k-1}+\sum_{j=0}^{k-1} F_{2 j+1} .
$$

Applying the identity $\sum_{j=0}^{m} F_{2 j+1}=F_{2 m+2}$ (Identity \#2 in [2], noting their convention that $f_{n}=F_{n+1}$), we have $C(k)=F_{2 k-1}+F_{2 k}=F_{2 k+1}$. With the initial cases, this shows that $C(n)=F_{2 n+1}$ for all natural numbers n.

The second half of the proof above, showing that $C(n)=F_{2 n+1}$, can also be accomplished using a tiling argument of Anderson and Lewis [1] which allows tiles of any length. Think of a convex subset of \underline{k} as a white tile on a $1 \times k$ strip. Then a collection of mutually disjoint convex subsets of \underline{k} may be represented by a tiling of a $1 \times k$ strip by white tiles of various lengths and red squares in any remaining gaps, and the number of such tilings is $C(k)$. Having tiled a $1 \times k$ strip, we may obtain a suitable tiling of a $1 \times(k+1)$ strip either by appending a red square in the $k+1$ st position (producing $C(k)$ tilings), appending a white square in the $k+1$ st position (producing $C(k)$ tilings), or, if the tile covering the k th slot is white, it may be expanded to cover the $k+1$ st slot. To count these expansions easily, expand the tile covering the k th slot, red or white, to cover the $k+1$ st slot (in $C(k)$ ways), then remove those $C(k-1)$ ending in a red domino (and leaving a suitable tiling of a $1 \times(k-1)$ strip). Thus, $C(k+1)=3 C(k)-C(k-1)$. This recurrence relation is satisfied by $F_{2 n+1}$ (see Identity $\# 7$ in [2]), and since the initial terms agree, we conclude that $C(n)=F_{2 n+1}$ for all natural numbers n. The authors are grateful to the referee for pointing out this tiling argument.

For a fixed p, the second factors $\binom{p-1}{j-1}$ in the double sum of the theorem constitute the $(p-1)$ st row of Pascal's triangle, while the values of the first factors $\binom{n-p+j}{j}=\binom{n-p+j}{n-p}$ are a subset of the $(n-p)$ th diagonal. Thus, the double-sum formula for $F_{2 n+1}-1$ can be viewed as the sum of dot products of vectors in Pascal's triangle, as illustrated below for $n=4$.

The sum of the dot products of the circled pairs of vectors is $F_{2(4)+1}-1$.
Our motivation for this problem arose from counting certain finite topologies as described below. If j is any point in a finite topological space, let $N(j)$ be the intersection of all open sets containing j.

Corollary. Let \mathcal{T} be the set of topologies τ on \underline{n} such that the basis $\{N(j): j \in \underline{n}\}$ consists of a collection \mathcal{C} of mutually disjoint convex subsets of \underline{n}, or such a collection \mathcal{C} together with n. Then $|\mathcal{T}|=F_{2 n+1}-1$.

The corollary follows from the almost one-to-one correspondence between the topologies of \mathcal{T} and the collections \mathcal{C} counted by $C(n)$, where for $j \in \underline{n} \backslash \bigcup \mathcal{C}$, we take $N(j)=\underline{n}$.

However, the collection having no blocks generates the same topology - namely the indiscrete topology - as the collection having a single block containing all the points.

References

[1] P. G. Anderson and R. H. Lewis, Board tilings of the second kind, Proceedings of the Thirteenth International Conference on Fibonacci Numbers and Their Applications, Patras, Greece, July 2008. Florian Luca (Ed.), Utilitas Mathematica Publishing, Inc. (to appear).
[2] A. Benjamin and J. Quinn, Proofs that Really Count, Dolciani Mathematical Expositions no. 27, Mathematical Association of America, Washington, DC, 2003.

MSC2000: 11B39, 05A18, 54F05
Department of Mathematics, Western Kentucky University Honors College, 1906 College Heights Blvd, Bowling Green, KY 42101-1078

E-mail address: thomas.clark973@wku.edu
Department of Mathematics, Western Kentucky University, 1906 College Heights Blvd, Bowling Green, KY 42101-1078

E-mail address: tom.richmond@wku.edu

