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Abstract. In this paper we study various structural properties of an infinite matrix M
of 0’s and 1’s, the rows of which correspond to the Zeckendorf representations of the non-
negative integers. In particular, we calculate the proportion of 1’s appearing amongst the
digits in each of the columns of M and go on to obtain some associated asymptotic results.

1. Introduction

The most well-known method for representing non-negative integers using just the digits
0 and 1 is of course by way of the bicimal system. With the subscript 2 denoting the fact
that the numbers are given in binary, we have

02 = 0

12 = 1

102 = 2

112 = 3

1002 = 4

1012 = 5

1102 = 6

1112 = 7

10002 = 8

and so on. It is clear that when n ∈ N is large, the probability that a number chosen
at random from {0, 1, 2, . . . , n} will end in 1 when written in binary is approximately one-
half. In fact, by taking n sufficiently large, the probability that a randomly-chosen number
from {0, 1, 2, . . . , n} will have a 1 in some specified position can be made arbitrarily close to
one-half.

The above result is certainly rather straightforward, but there are other ways of repre-
senting integers using just 0’s and 1’s for which the corresponding situation is not quite so
obvious. One such system is the Zeckendorf representation. In this paper we study the
structural properties of an infinite matrix for which the rows correspond to the Zeckendorf
representations of the non-negative integers. These properties are then used to derive results
concerning the proportion of 1’s appearing amongst the digits in such representations.

2. Zeckendorf Representations of Integers

Zeckendorf’s theorem is a reasonably well-known result concerning the possibility of writ-
ing positive integers as a sum of distinct Fibonacci numbers. Both the theorem and the repre-
sentation are named after the Belgian medical doctor and amateur mathematician Edouard
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Zeckendorf (1901–1983). Although he did not publish anything in this regard until 1972 [8],
it would appear that he had first obtained a proof as early as 1939. A short, nonetheless
interesting, biography of Zeckendorf is to be found in [3].

The theorem states that every n ∈ N can be represented in a unique way as the sum of
one or more distinct Fibonacci numbers in such a way that the sum does not include any
two consecutive Fibonacci numbers. Somewhat more formally and precisely, for any n ∈ N
there exists an increasing sequence of positive integers of length k ∈ N, (a1, a2, . . . , ak) say,
such that a1 ≥ 2, ai ≥ ai−1 + 2 for i = 2, 3, . . . , k, and

n =
k∑

i=1

Fai
.

A proof is given in both [1] and [7].
For example, consider the following two ways of writing 43 as a sum of distinct Fibonacci

numbers:

43 = 1 + 8 + 34

= F2 + F6 + F9

and

43 = 1 + 3 + 5 + 34

= F2 + F4 + F5 + F9.

The consecutive Fibonacci numbers appearing in the second sum above preclude this from
being a Zeckendorf representation. It is in fact clear that the first sum is a Zeckendorf
representation of 43. Furthermore, by Zeckendorf’s theorem, this is the only way (other
than the order of the terms) that 43 can be expressed in this way. We may thus write

43 = 10010001Z ,

with the subscript denoting the fact that this is a Zeckendorf representation.
Note that no Zeckendorf representation requires the use of F1. Clearly, if a Zeckendorf

representation of n contains F2 then on replacing F2 with F1 we would still have a represen-
tation for n that does not include any consecutive Fibonacci numbers. This would, however,
violate the uniqueness of these representations. It is thus necessary to stipulate that F1 does
not appear in any Zeckendorf representation. (Of course, an alternative would be to allow
F1 to be used rather than F2, but the convention is for the F2 column to denote the ‘units’.)
We will have cause to use the following result:

(Z1) The Zeckendorf representation of any n ∈ N contains the largest Fibonacci number
not exceeding n.

3. The Golden String

Definition 3.1. Let A and B be finite strings of symbols. We use A : B to denote the
concatenation of A and B.

The golden string, S∞ = abaababaabaab . . ., may be obtained recursively as follows. We
start with the strings S1 = a and S2 = ab. In order to obtain S3 we concatenate S2 and S1
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as follows:

S3 = S2 : S1

= aba.

Next,

S4 = S3 : S2

= abaab,

and so on. In general Sk = Sk−1 : Sk−2 for k ≥ 2, and it is clear that Sk contains Fk+1 letters
(Fk a’s and Fk−1 b’s).

It is more usual to use 1’s and 0’s than a’s and b’s as elements of the golden string; see [4],
for example. This convention is not adopted here however, as it would create the potential for
notational confusion later in the paper. We will need the following simple result associated
with the golden string [5]:

(G1) The number of a’s in the first n elements of S∞ is given by
⌊

n + 1

φ

⌋
,

where

φ =
1 +

√
5

2
is the golden ratio.

4. The Zeckendorf Matrix

From Section 2 we know that for any non-negative integer n there exists a unique sequence
(ck) for which ck ∈ {0, 1} and ckck+1 = 0, k = 1, 2, 3, . . ., such that

n =
∞∑

k=2

ckFk.

We construct from this the infinite Zeckendorf matrix M whose entry m(i, j) gives the
coefficient cj of Fj in the Zeckendorf representation of n. So, for example, m(43, 6) = 1 and
m(43, 7) = 0. Note that, for the sake of convenience, the rows of M are numbered from
0 onwards, while the columns are numbered from 2 onwards. It ought also to be borne in
mind that the convention of numbering columns of matrices from left to right means that
the nth row of M corresponds to a ‘reflection’ of the Zeckendorf representation of n. As will
be shown in due course, the structure of each column of M is closely related to the golden
string.

Definition 4.1. For a ≤ b, let Dk(a, b) denote the string consisting of the ath to the bth
digits inclusive in the kth column of M . We use Dk(0,∞) to represent the string comprising
the whole of the kth column of M .

Lemma 4.2. For p ≥ 1 and k ≥ 2 we have

Dk (0, Fk+p − 1) = Dk (Fk+p+1, Fk+p+2 − 1) .
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Proof. Consider any n ∈ {0, 1, . . . , Fk+p − 1}. By Zeckendorf’s theorem there exists an
increasing sequence of positive integers of length r ∈ N, (a1, a2, . . . , ar) say, such that a1 ≥ 2,
ai ≥ ai−1 + 2 for i = 2, 3, . . . , r, and

n =
r∑

i=1

Fai
.

Furthermore, since ar ≤ k + p− 1, the expression

r∑
i=1

Fai
+ Fk+p+1

gives the Zeckendorf representation for n + Fk+p+1. Therefore,

m(n, k) = m (n + Fk+p+1, k) ,

which proves the lemma. ¤

Definition 4.3. Let Ak = F (0, k) : F (1, k − 1) : F (0, k) and Bk = F (0, k) : F (1, k − 1),
where F (0, k) and F (1, k) denote strings of Fk 0’s and 1’s, respectively. Thus, for example,
A4 = 00011000 and B5 = 00000111.

Definition 4.4. We use Si (Ak, Bk) to denote the string of 0’s and 1’s obtained by replacing
each a and b in Si with Ak and Bk, respectively. In a similar manner, S∞ (Ak, Bk) may be
obtained from S∞. For example,

S3 (A4, B4) = 000110000001100011000.

Theorem 4.5.

S∞ (Ak, Bk) = Dk(0,∞)

for all r ∈ N.

Proof. Let us consider the kth column of M for some k ≥ 2, remembering that this gives us,
for each n ∈ N0, the coefficient of Fk in the Zeckendorf representation of n. We proceed by
induction on r, showing that

Sr (Ak, Bk) = Dk (0, Fk+r+1 − 1)

for each r ∈ N.
First, it is clear that Dk (0, Fk − 1) is a string of 0’s. Second, from (Z1) it follows

that Dk (Fk, Fk+1 − 1) consists entirely of 1’s. Third, using (Z1) once more, we know that
Dk+1 (Fk+1, Fk+2 − 1) consists entirely of 1’s, and thus Dk (Fk+1, Fk+2 − 1) must consist en-
tirely of 0’s. It is therefore the case that

S1 (Ak, Bk) = Dk (0, Fk+2 − 1) .

Following similar arguments, it can be shown that Dk (Fk+2, Fk+3 − 1) = Bk, and hence that

S2 (Ak, Bk) = Dk (0, Fk+3 − 1) .

Let us now assume that, for some r ∈ N, it is true that

Si (Ak, Bk) = Dk (0, Fk+i+1 − 1)
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for i = 1, 2, . . . , r. Then

Sr+1 (Ak, Bk) = Sr (Ak, Bk) : Sr−1 (Ak, Bk)

= Dk (0, Fk+r+1 − 1) : Dk (0, Fk+r − 1)

= Dk (0, Fk+r+1 − 1) : Dk (Fk+r+1, Fk+r+2 − 1)

= Dk

(
0, Fk+(r+1)+1 − 1

)
,

where we have used Lemma 4.2 along with Definition 4.4. The result has thus been proved.
¤

5. Formulas for the Proportions of 1’s

Theorem 5.1. Let, for k ≥ 2, pk denote the proportion of 1’s appearing amongst the digits
in column k of M . Then

pk =
Fk−1

φk
.

Proof. From Definition 4.3 it can be seen that the numbers of digits in Ak and Bk are given
by

Fk + Fk−1 + Fk = Fk+2 and Fk + Fk−1 = Fk+1,

respectively.
We know from Theorem 4.5 that Dk(0,∞) consists essentially of a series of blocks, with

each block corresponding either to Ak or Bk. From (G1) it is also true that, of the first q of

these blocks,
⌊

q+1
φ

⌋
correspond to Ak’s. The number of digits hk(q) in the first q blocks is

thus given by

hk(q) =

⌊
q + 1

φ

⌋
Fk+2 +

(
q −

⌊
q + 1

φ

⌋)
Fk+1

= qFk+1 +

⌊
q + 1

φ

⌋
(Fk+2 − Fk+1)

= qFk+1 +

⌊
q + 1

φ

⌋
Fk.

Both Ak and Bk contain Fk−1 1’s. Therefore, in the first hk(q) digits of Dk(0,∞) there are
qFk−1 1’s. The proportion of 1’s in column k to this point is thus

qFk−1

qFk+1 +
⌊

q+1
φ

⌋
Fk

.

From this it follows that

pk = lim
q→∞

qFk−1

qFk+1 +
⌊

q+1
φ

⌋
Fk

=
Fk−1

Fk+1 +
(

Fk

φ

)

=
Fk−1

φk
,
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where we have used the result φFk+1 + Fk = φk+1. ¤

Corollary 5.2. The proportion of 1’s in columns 2 to k inclusive, pk say, is given by

pk =
1

k − 1

k∑
j=2

Fj−1

φj
.

Proof. This result follows immediately from Theorem 5.1. ¤

Corollary 5.3. For large k, pk is approximately equal to 5−√5
10

.

Proof.

lim
k→∞

pk = lim
k→∞

Fk−1

φk

=
1

φ
√

5

=
5−√5

10
.

¤

Finally, it is worth noting the following:

(1) One interpretation of Corollary 5.3 is that for any ε > 0 there exists a pair (n, k)
of positive integers such that when a number is chosen at random from the set
{0, 1, 2, . . . , n} the expected proportion of 1’s in the rightmost k digits of the Zeck-

endorf representation of this number is within ε of 5−√5
10

.

(2) Since
∑∞

j=2
1
φj = 1, the expression

∑k
j=2

Fj−1

φj may, for large k, be regarded as an

exponentially-weighted average of the first k − 1 Fibonacci numbers.
(3) The proportions pk and pk exhibit different behavior in that the former approaches

5−√5
10

monotonically as k increases, while the latter tends to this limit in an oscillatory
manner.

(4) The following Fibonacci triangle (see A058071 in [6]) arises naturally from M :

1
1 1

2 1 2
3 2 2 3

5 3 4 3 5
8 5 6 6 5 8

13 8 10 9 10 8 13
21 13 16 15 15 16 13 21

34 21 26 24 25 24 26 21 34
55 34 42 39 40 40 39 42 34 55

89 55 68 63 65 64 65 63 68 55 89
...

The kth entry in the rth row of this triangle is equal to FkFr−k+1, which is also equal
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to the number of 1’s in Dk (0, Fr+2). The rth row-sum of the above triangle is easily
shown to be

r∑

k=1

FkFr−k+1 =
1

5
(rFr+1 + 2(r + 1)Fr)

(see [2] or [5], for example), which coincides with the total number of 1’s contained
in the first Fr+2 rows of M . This is the sequence of Fibonacci numbers convolved
with themselves, and appears in [6] as A001629.
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