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Abstract. In recent years, much research has been conducted in the area of random Fi-
bonacci sequences. Recently, it was shown that some recursive sequences can be periodic,
and occur as a subset of measure 0 of the set of random Fibonacci sequences. In this paper
we will generalize those results to the case of n-nacci sequences and draw similar conclusions
to the n = 2 case.

In 2009 the present author showed in [2] that if one chose a sequence of plus signs and
minus signs, then picked two seeds and used the sequence of pluses and minuses to generate
a sequence of numbers using the seeds, some of those sequences turned out to be periodic.
We will start with basic definitions and notations, some of which differ slightly from the
original paper due to hindsight proving that some notation is better than others. After that
we will restate the main results in a generalized form. We begin with an example.

Example 1. Consider using the seeds (1,1) and using the sequence of pluses and minuses
{+,−}. Then our sequence would begin with 1, 1, 2,−1, 1,−2,−1,−1,−2, 1,−1, 2, 1, 1 . . ..
This is actually the entire sequence because this plus/minus sequence is periodic and has
period 6 as shown in [2].

This example was the driving force behind the original question already addressed. The
natural extension is to wonder if similar results exist for the tribonacci sequence, the tetranacci
sequence, and the n-nacci sequences in general. We begin with an example of a tribonacci-
like sequence. In this case we use 3 seeds, and we use the previous 3 terms to arrive at the
next term of the sequence. Consequently, our sequence of pluses and minuses will actually
be a sequence of ordered pairs of pluses and minuses.

Example 2. Consider the sequence with seeds (1, 1, 1) and plus/minus sequence of {(+,−),
(−,−), (−,−), (+, +)}. That is, if our sequence is An, then A1 = A2 = A3 = 1, A4 =
A1 + A2 −A3. Continuing, A5 = A2 −A3 −A4. So to get the An+1 term, we simply line up
An−2, An−1 and An and insert the proper signs in between them then perform our operations
left to right. As such our sequence is:

1, 1, 1, 1,−1, 1, 1,−1, 1, 1, 1.

We will see shortly that this sequence is not only periodic for these specific seeds but is in
fact periodic for all seeds.

In the following example we look at a tetranacci-like sequence. In this case our sequence
of pluses and minuses will be a sequence of ordered triples and the calculations are done
similarly to the previous example.
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Example 3. Consider the sequence with seeds (1, 1, 1, 1) and plus/minus sequence of

{(+, +,−), (+,−,−), (−,−,−), (+, +, +), (+, +, +)}.
Then our sequence begins with

1, 1, 1, 1, 2,−1,−1, 1, 1,−2, 1, 1, 1, 1 . . . .

As before, we will see later that this sequence is also periodic for all seeds.

Now that the reader has a flavor of the objects being worked with, we can begin to formally
state some of our definitions.

Consider first that our seed can be thought of as a vector in Zn, and each of our (n− 1)-
tuples of pluses and minuses can be thought of as an (n− 1)× (n− 1) matrix acting on that
seed. In the case of the standard Fibonacci sequence, when n = 2, and the only plus/minus

sequence is {+}, then the only matrix we concern ourselves with is

(
1 1
1 0

)
, which has an

eigenvalue equal to the golden ratio. If we also consider the sequence {−}, then we must

consider the matrix

( −1 1
1 0

)
as outlined in many linear algebra texts and in [2]. It is

clear to see that as n increases the number of matrices required increase as well. The exact
number of matrices needed will be 2n−1. This will become clear when we generate some of
the matrices needed for n = 3.

Consider a relation R1 defined as:

R1 : Xn+1 = Xn−2 + Xn−1 + Xn.

Let
−→
Xn =




Xn

Xn−1

Xn−2


, and find A1 such that

A1
−→
Xn =




Xn+1

Xn

Xn−1


 =




Xn−2 + Xn−1 + Xn

Xn

Xn−1


 .

It is easy to see that A1 =




1 1 1
1 0 0
0 1 0


.

So our matrix A1 is the matrix associated with the ordered pair (+, +). We will find the
matrix for (+,−) and it will become clear what each of the 4 matrices will look like and
more generally what each of the 2n−1 matrices will look like.

Consider now the relation R2 defined as:

R1 : Xn+1 = Xn−2 + Xn−1 −Xn.

Let
−→
Xn =




Xn

Xn−1

Xn−2


, and find A2 such that

A2
−→
Xn =




Xn+1

Xn

Xn−1


 =




Xn−2 + Xn−1 −Xn

Xn

Xn−1


 .
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It is easy to see that A2 =



−1 1 1
1 0 0
0 1 0


.

We see now that the 4 matrices we will need are the two listed above and

A3 =




1 −1 1
1 0 0
0 1 0


 and A4 =



−1 −1 1
1 0 0
0 1 0


 .

Similarly, in the general case the only row that will change in the matrix will be the top
row with the rightmost entry remaining 1 and the other entries taking on all possible ar-
rangements of ±1. The bottom part of each matrix will resemble the identity with an extra
column of zeros on the right.

It will prove useful to have a standard way of referring to these matrices in the general
case. To do this we introduce the following notation. In the general case, when we have 2n−1

matrices, we will denote each matrix by Mn,k. The k will be the base 10 representation of
the binary number generated by associating + with 1 and - with 0. For example, if n = 6
and our 5-tuple is (+, +,−,−, +), then we associate that with the number 11001 in base
2, which is 25 in base 10, so that matrix will be called M6,25. From our matrices above,
A1 = M3,3 and A4 = M3,0.

Definition 1. Let Ωn = {f f : N −→ {0, 1, . . . , n − 1}}. We say {Xi}∞i=1 is a random
n-nacci sequence if

(1) f ∈ Ωn,

(2)
−→
Xk = Mn,f(k)

−→
X k−1.

Definition 2. With Ωn as before, and f ∈ Ωn, we say σ is a motif if σ =
∏1

i=m Mn,f(i). We
will use |σ| to denote the length of the motif, which is the number of matrices in the product,
or more simply, m.

Note that the indices on the product are backwards from usual notation. This is because
of the author’s preference for left multiplication with matrices.

Theorem 1. Suppose σ is a motif, then σ is periodic if and only if there exists a k ∈ N such
that σk = I, where I is the identity matrix.

Proof. A sequence is periodic if it repeats itself after a finite number of steps. If σk = I, then

for all seeds
−→
Xn, σk−→Xn = I

−→
Xn =

−→
Xn. Thus, after k steps, the sequence repeats itself. ¤

For notation purposes, we will say ρ(σ) = k is the period of σ if k is the smallest such
positive integer for which σk = I. For a fixed n, let Mn be the set of all periodic motifs.

We can now clean up the previous examples using our new notation. In Example 1, our
motif was σ1 = M2,0M2,1. In Example 2, our motif was σ2 = M3,3M3,0M3,0M3,2. Finally, in
Example 3, we had the motif σ3 = M4,7M4,7M4,0M4,4M4,6. Notice that σ6

1 = I, σ2
2 = I, and

σ2
3 = I. Thus, all the motifs were periodic.

Proposition 1. Suppose σ ∈ Mn, f ∈ Ωn, and σ =
∏1

i=m Mn,f(i). If τ = (
∏1

i=l Mn,f(i))

(
∏l−1

j=m Mn,f(j)), then τ ∈ Mn. This simply means that given any periodic motif, one can
begin anywhere in that motif and cycle back to the beginning when the end is reached.

Proof. The proof is identical to Proposition 2 of [2]. ¤
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Lemma 1. Suppose σ ∈ Mn, ρ(σ) = k, then there exists τ ∈ Mn such that ρ(τ) = d(k),
where d(k) is a divisor of k, for all d(k).

Proof. The proof is identical to Lemma 1 of [2]. ¤

Lemma 2. The determinant of Mn,k is (−1)n+1 for all n, k.

Proof. We calculate. Notice that we can perform a cofactor expansion on the nth column
of Mn,k easily because it consists of the column vector of zeros with a 1 in the top position.
When we expand here, we get (−1)n+1 det(I) = (−1)n+1 since we only have the identity
matrix remaining after eliminating the top row and far right column. The rest of the terms
are zero. ¤

Proposition 2. Suppose σ ∈Mn where n is odd, then ρ(σ) 6= 3.

Proof. First notice that if ρ(σ) = 3, then any eigenvalues of σ must necessarily be 3rd roots
of unity, since they equal 1 when cubed. In rectangular form, the 3 roots would be 1 and

−1
2
±

√
3

2
i. As such, the characteristic polynomial of σ must be of the form

(λ− 1)a(λ− (−1

2
+

√
3

2
i))b(λ− (−1

2
−
√

3

2
i))c

where a + b + c = n. For simplicity, let s = −1
2
−

√
3

2
i and t = −1

2
+

√
3

2
i. Recall that the

constant term in any characteristic polynomial is equal to the determinant of the matrix.
Since n is odd, then, by Lemma 2, det(σ) = 1. The constant term in our polynomial is
clearly (−1)a(−s)b(−t)c. Notice that since s and t are third roots of unity, and (−1)2 = 1,
we have

(−1)a(−s)b(−t)c = (−1)a (mod 2)(−s)b (mod 3)(−t)c (mod 3). (1)

With the restriction that (1)=det(σ) = 1, we have only a few options for a, b and c. Notice
that if b 6≡ 0 (mod 3) or if c 6≡ 0 (mod 3), then we can’t possibly have (1) = 1. Thus,
assume b ≡ c ≡ 0 (mod 3). Notice also that b = c since they are complex conjugates. Our
only choices for a are 0 and 1. If a = 1, again we have that (1) 6= 1, so a ≡ 0 (mod 2) is the
only option.

So we have that a ≡ 0 (mod 2), and b = c ≡ 0 (mod 3). Thus, a + b + c ≡ 0 (mod 2).
However, this contradicts the fact that a+b+c = n ≡ 1 (mod 2). Thus, we have the desired
result by contradiction. ¤

Definition 3. Define the matrix V(k,n) as

V(k,n) =




2k−1 2k−1 · · · 2k−1 2k−1

2k−2 2k−2 · · · 2k−2 2k−2

...
...

...
...

2 2 · · · 2 2
1 1 · · · 1 1




where V(k,n) is a k × n matrix.

Notice that V(k,n) is similar to a Vandermonde matrix, hence the letter designation.
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Definition 4. Define the matrix Bk as

Bk =




2k − 1 2k − 2 · · · 2k − 2k−2 2k−1

2k−1 2k−1 − 1 · · · 2k−1 − 2k−3 2k−2

2k−2 2k−2 · · · 2k−2 − 2k−4 2k−3

...
...

...
...

2 2 · · · 2 1




.

Definition 5. Define the matrix An as

An =




1 1 1 · · · 1 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0




.

Notice that An is an n× n matrix with an (n− 1)× (n− 1) identity as a submatrix, and
an extra row of 1’s at the top with 0’s filling in the rightmost column.

Example 4. One of each of the previous 3 matrices is shown here in order:

V (3, 5) =




4 4 4 4 4
2 2 2 2 2
1 1 1 1 1


 B4 =




15 14 12 8
8 7 6 4
4 4 3 2
2 2 2 1


 A4 =




1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0


 .

Lemma 3. With An =




1 1 · · · 1 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0




, Ak
n =

(
V(k−1,n−k+1) Bk−1

An−k+1 E(n−k+1,k−1)

)
for

k ≥ 2. Where E(n−k+1,k−1) is an (n− k + 1)× (k− 1) matrix consisting of one row of 1’s in
the top row, and 0’s for the remaining entries.

Proof. The proof is by induction. Consider AnAn:




1 1 · · · 1 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0







1 1 · · · 1 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0




=




2 2 · · · 2 2 1
1 1 · · · 1 1 1
1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
...

...
...

0 0 · · · 1 0 0




.

Thus, AnAn =

(
V(1,n−1) B1

An−1 E(n−1,1)

)
as required.
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Now assume Ak−1
n =

(
V(k−2,n−k+2) Bk−2

An−k+2 En−k+2,k−2

)
. We will calculate Ak−1

n An.




2k−2 · · · 2k−2 2k−2 − 1 2k−2 − 2 · · · 2k−3

2k−3 · · · 2k−3 2k−3 2k−3 − 1 · · · 2k−4

...
...

...
...

...
2 · · · 2 2 2 · · · 1
1 · · · 1 1 1 · · · 1
1 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0







1 1 · · · 1 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0




.

Careful calculation shows this equals


2k−1 2k−1 · · · 2k−1 2k−1 2k−1 − 1 2k−1 − 2 · · · 2k−2

2k−2 2k−2 · · · 2k−2 2k−2 2k−2 2k−2 − 1 · · · 2k−3

...
...

...
...

...
...

...
2 2 · · · 2 2 2 2 · · · 1
1 1 · · · 1 1 1 1 · · · 1
1 0 · · · 0 0 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · 1 0 0 0 · · · 0




.

All that remains to show is that the sizes of the partitions are correct. It is easy to see that
the number of rows in the upper left partition is k− 1. The number of columns in the upper
right partition is also clearly k− 1. Thus, the number of columns in the upper left partition
is n− (k− 1), and as such, that partition must be V(k−1,n−k+1) and the upper right partition
is necessarily Bk−1. With this established, it is a trivial matter to show that the bottom left
partition is in fact An−k+1 and the bottom right partition is E(n−k+1,k−1). This is the desired
result. ¤
Corollary 1. If we consider the entries modulo 2, An+1

n ≡ I.

Proof. By Lemma 3, we have that An+1
n = Bn. This happens because

An+1
n =

(
V(n,0) Bn

A0 E0,n

)
,

and each of the 0 subscripts mean the submatrix has either 0 rows or 0 columns. Notice

Bni,j
≡

{
0 (mod 2) for i 6= j,

1 (mod 2) for i = j,
which is the desired result. ¤

Theorem 2. Consider σ ∈Mn such that ρ(σ) = p, and |σ| = m, then mp ≡ 0 (mod n+1).

Proof. Since σ ∈ Mn, then σ is the finite product of some Mn,k. However, if we consider
the entries of Mn,k modulo 2, we find that Mn,k ≡ An for all n, k. Consequently, if |σ| = m,
then σ ≡ Am

n (mod 2). Thus, by Lemma 3, we have that if σ is periodic, then σmp = I, but
this can only happen when mp ≡ 0 (mod n + 1). ¤

We have managed to generalize some of the most interesting results from the case of n = 2
here, excluding one. For the case of n = 2, we showed in [2] that not only was the product of
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the period and the length of the motif congruent to 0 modulo 3, but we also showed that the
only possible periods were 1, 2, 3, and 6. Early computational results seem to suggest that
for the case of n = 3, the only possible periods are 1, 2, and 4, but this has yet to be proven.
The higher values of n are pure guesswork at this point. There is a wonderful result in a 2002
paper [1] concerning possible values of the periods, but future research will be required to
determine which periods are actually attainable. Proposition 2 was a sample of what those
results might look like. Other topics of current research include calculating exactly how
many distinct periodic motifs exist for a given length and necessary and sufficient conditions
under which a given matrix represents a periodic motif, which has been solved for the n = 2
case, and further results are expected.
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