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Abstract. We make use of an observation connected to three term recurrence relations to
obtain Cassini-like formulas for Fibonacci and Lucas numbers in addition to similar identities
for Fibonacci, Lucas, Jacobsthal, Morgan-Voyce, Chebyshev and Dickson polynomials. A
general result for three term recurrences is also given.

1. Introduction

The Cassini identity for Fibonacci numbers Fn, namely that Fn−1Fn+1 − F 2
n = (−1)n,

is one of the facts about the Fibonacci numbers that one might call common mathematical
knowledge. We will in the following aim at presenting the identity in a more general context
and in the process obtain similar results for related sequences.

2. Theoretical Framework

We start off by defining a few basic and well-known notions to avoid confusion. Our objects
of study will be the three term recurrence relations, defined by

Xn = αXn−1 + βXn−2, (2.1)

where α and β are (possibly complex) constants. A sequence {Xi}
∞

i=0 is called a solution of
(2.1) if its elements satisfy this equality for all i ∈ N. The set of all solutions of (2.1) is a linear
space, as seen in [3], and consequently we have that if {Xn} is a solution of (2.1), then {aXn}
is also a solution for any fixed number a ∈ C. In addition, if {Xn} and {Yn} are solutions
of (2.1), then {Xn}+ {Yn} = {Xn + Yn} is also a solution of (2.1). It is also worth pointing
out that if {Xi}

∞

i=0 is a solution, then {Xi+l}
∞

i=0 is also a solution for any l since α and β are
constants.

Let us now assume that {Xm} and {Ym} are two solutions of the recurrence (2.1) and define

∆
(k)
m to be given by

∆(k)
m = Xm+kYm−1 −Xm−1Ym+k. (2.2)

We then have that

∆(0)
m = XmYm−1 −Xm−1Ym (2.3)

= (αXm−1 + βXm−2)Ym−1 −Xm−1(αYm−1 + βYm−2) (2.4)

= α(Xm−1Ym−1 −Xm−1Ym−1) + β(Xm−2Ym−1 −Xm−1Ym−2) (2.5)

= −β∆
(0)
m−1 = · · · = (−β)m−l∆

(0)
l

. (2.6)
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We also have that

∆(1)
m = Xm+1Ym−1 −Xm−1Ym+1 (2.7)

= (αXm + βXm−1)Ym−1 −Xm−1(αYm + βYm−1) (2.8)

= α(XmYm−1 −Xm−1Ym) + β(Xm−1Ym−1 −Xm−1Ym−1) (2.9)

= α∆(0)
m . (2.10)

Hence, for k ≥ 2 we have

∆(k)
m = Xm+kYm−1 −Xm−1Ym+k (2.11)

= (αXm+k−1 + βXm+k−2)Ym−1 −Xm−1(αYm+k−1 + βYm+k−2) (2.12)

= α(Xm+k−1Ym−1 −Xm−1Ym+k−1)

+ β(Xm+k−2Ym−1 −Xm−1Ym+k−2) (2.13)

= α∆(k−1)
m + β∆(k−2)

m . (2.14)

Thus, ∆
(k)
m is also a solution of the recurrence in (2.1). With this in mind, let us return to the

recurrence in (2.1). Let {Pn} be a solution of (2.1) where P−1 = 0 and P0 = 1. We then have
that

P0 = 1 (2.15)

P1 = α (2.16)

P2 = α2 + β (2.17)

P3 = α3 + 2αβ (2.18)

...

and in general, by [1, p. 168], we have that

Pk =

b k

2
c

∑

i=0

(

k − i

i

)

αk−2iβi (2.19)

for k ≥ 0. Now, with ∆
(0)
m and ∆

(1)
m as starting values in (2.1), we observe the following:

∆(1)
m = α∆(0)

m = P1∆
(0)
m (2.20)

∆(2)
m = α∆(1)

m + β∆(0)
m = (α2 + β)∆(0)

m = P2∆
(0)
m (2.21)

∆(3)
m = α∆(2)

m + β∆(1)
m = (α3 + 2αβ)∆(0)

m = P3∆
(0)
m (2.22)

∆(4)
m = α∆(3)

m + β∆(2)
m = (α4 + 2α2β + β2)∆(0)

m = P4∆
(0)
m (2.23)

... .

Thus we have that
∆(k)

m = Pk∆
(0)
m = Pk(−β)m−l∆

(0)
l

. (2.24)

If we now set l = 1, we have proven the following theorem.

Theorem 2.1. If {Xn} and {Yn} are two solutions of the recurrence (2.1) then the identity

Xm+kYm−1 −Xm−1Ym+k = Pk(−β)m−1[X1Y0 −X0Y1] (2.25)

holds.
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If in 2.1 we set Yn = Xn+l and Xn is a solution such that Pk = Xk+1 we see that we obtain

Xm+kXm+l−1 −Xm−1Xm+l+k = Xk+1Xl(−β)m−1. (2.26)

By setting k = 0 and l = 1 and use the fact that Pk = Xk+1, we obtain the identity

X2
m −Xm−1Xm+1 = (−β)m−1. (2.27)

We have thus proven the following corollary.

Corollary 2.2. If {Xn} is a solution of the recurrence (2.1) such that Pk = Xk+1 then the

following identities hold:

Xm+kXm+l−1 −Xm−1Xm+l+k = Xk+1Xl(−β)m−1 (2.28)

X2
m −Xm−1Xm+1 = (−β)m−1. (2.29)

Application of these results to various recurrences will be the focus of the rest of the paper.

3. Identities

We will now use Theorem 2.1 to derive identities connected to various recurrences of the
type given in (2.1).

3.1. Fibonacci and Lucas Identities. We start off by giving a few identities related to the
Fibonacci and Lucas numbers. We recall that the Fibonacci and Lucas numbers are given by
setting α = β = 1 in the recurrence in (2.1) and that the starting values for the Fibonacci
sequence is F0 = 0 and F1 = 1 and that the starting values for the Lucas sequence is L0 = 2
and L1 = 1. We then observe that Pk = Fk+1. Now, we easily obtain the identity

Fm+kLm−1 − Fm−1Lm+k = 2Fk+1(−1)(m−1) (3.1)

by setting Xn = Fn and Yn = Ln in Theorem 2.1. But we can do more. We may apply
Corollary 2.2 to obtain the identity

Fm+kFm+l−1 − Fm−1Fm+l+k = Fk+1Fl(−1)m−1 (3.2)

from which we also obtain the Cassini identity. We can also set Xn = Ln and Yn = Xn+l in
Theorem 2.1 to obtain

Lm+kLm+l−1 − Lm−1Lm+l+k = Fk+1(−1)m−1[Ll − 2Ll+1]. (3.3)

Hence, if we set k = 0 and l = 1 we have a Cassini-like formula for the Lucas numbers, namely

L2
m − Lm−1Lm+1 = 5(−1)m. (3.4)

3.2. Fibonacci and Lucas Polynomials. We can also apply Theorem 2.1 to the Fibonacci
and Lucas polynomials. The recurrence (2.1) is the same for both polynomials, with α = x

and β = 1. Starting values for the Fibonacci and Lucas polynomials are f1(x) = 1, f2(x) = x,
l0(x) = 2 and l1(x) = x, respectively. We also observe that Pk = fk+1(x) and that f0(x) = 0
and thus, by Theorem 2.1, we obtain the identity

fm+k(x)lm−1(x)− fm−1(x)lm+k(x) = 2fk+1(x)(−1)m−1. (3.5)

Furthermore, by application of Corollary 2.2 we obtain an identity similar to the one given in
(3.2), namely

fm+k(x)fm+l−1(x)− fm−1(x)fm+k+l(x) = fk+1(x)fl(x)(−1)m−1 (3.6)
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which again yields the Cassini-formula. We may also set Xt = lt(x) and Yt = Xt+n in Theorem
2.1 to obtain

lm+k(x)lm+n−1(x)− lm−1(x)lm+n+k(x) = fk+1(x)(−1)m−1[l1(x)ln(x)− l0(x)ln+1(x)]. (3.7)

From this we may also obtain the Cassini-like identity

lm(x)2 − lm−1(x)lm+1(x) = (−1)m(x2 + 4) (3.8)

by setting k = 0 and n = 1.

3.3. Jacobsthal Polynomials. We can also apply Theorem 2.1 to the Jacobsthal polynomi-
als. The Jacobsthal polynomials are given by a recurrence as in (2.1) where α = 1 and β = x.
The initial values for the Jacobsthal polynomials are J1(x) = J2(x) = 1. With Xn = Jn(x)
and Yn = Xn+l in Theorem 2.1 we have that Pk = Jk+1(x) and hence that the identity

Jm+k(x)Jm+l−1(x)− Jm−1(x)Jm+k+l(x) = Jk+1(x)(−x)m−1[Jl(x)− J0(x)Jl+1(x)] (3.9)

holds. Application of Corollary 2.2 yields the identity

Jm+k(x)Jm+l−1(x)− Jm−1(x)Jm+k+l(x) = Jk+1(x)Jl(x)(−x)m−1. (3.10)

From this we also obtain the Cassini-like formula

Jm(x)2 − Jm−1(x)Jm+1(x) = (−x)m−1. (3.11)

In [1, p. 471] the polynomial Kn(x) is defined in the same way as the Jacobsthal polynomials,
but with starting values K1(x) = 1 and K2(x) = x. We now apply Theorem 2.1 with {Xn} =
Jn(x) and {Yn} = Kn+1(x) to obtain the identity

Jm+kKm − Jm−1Km+k+1 = Jk+1(x)(−x)m−1.

With Xn = Kn+1(x) and Yn = Xn+l in Theorem 2.1 we have that

Km+k+1(x)Km+l(x)−Km(x)Km+k+l+1(x)

= Jk+1(x)(−x)m−1[K2(x)Kl+1(x)−K1(x)Kl+2(x)]. (3.12)

Also, if k = 0 and l = 1 we have that

Km+1(x)Km+1(x)−Km(x)Km+2(x) = Jk+1(x)(−x)m−1(x2 − 2x). (3.13)

3.4. Morgan-Voyce Polynomials. We also apply Theorem 2.1 and Corollary 2.2 to the
Morgan-Voyce polynomials Bn(x) and bn(x), with initial values B0 = 1, B1 = x + 2, b0 = 1
and b1 = x+ 1, and α = x+ 2, β = −1 in (2.1). We easily obtain the identities

Bm+k(x)bm−1(x)−Bm−1(x)bm+k(x) = Bk(x) (3.14)

Bm+k(x)Bm+l−1(x)−Bm−1(x)Bm+k+l(x) = Bk(x)Bl−1(x) (3.15)

Bm(x)2 −Bm−1(x)Bm+1(x) = 1 (3.16)

bm+k(x)bm+l−1(x)− bm−1(x)bm+k+l(x) = Bk(x)[(x + 1)bl(x)− bl+1(x)] (3.17)

bm(x)2 − bm−1(x)bm+1(x) = −x. (3.18)

Special cases of some of these identities are found in [4] and [5].
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3.5. Chebyshev Polynomials. Similarly, we may apply Theorem 2.1 and Corollary 2.2 to
the Chebyshev polynomials of the first kind, Tn(x), and second kind, Un(x), with initial values
T0(x) = 1, T1(x) = x, U0(x) = 1 and U1(x) = 2x, and α = 2x, β = −1 in (2.1). Hence we
obtain the identities

Um+k(x)Tm−1(x)− Um−1(x)Tm+k(x) = xUk(x) (3.19)

Um+k(x)Um+l−1(x)− Um−1(x)Um+k+l(x) = Uk(x)Ul−1(x) (3.20)

Um(x)2 − Um−1(x)Um+1(x) = 1 (3.21)

Tm+k(x)Tm+l−1(x)− Tm−1(x)Tm+k+l(x) = Uk(x)[xTl(x)− Tl+1(x)] (3.22)

Tm(x)2 − Tm−1(x)Tm+1(x) = 1− x2 (3.23)

since Pk = Uk(x).

3.6. Dickson Polynomials. Finally, we apply Theorem 2.1 and Corollary 2.2 to the Dick-
son polynomials of the first kind, Dn(x, α), and second kind, En(x, α), with initial values
D0(x, α) = 2, D1(x, α) = x, E0(x, α) = 1, and E1(x, α) = x, and α = x, β = −α in (2.1).
Hence we obtain the identities

Em+k(x)Dm−1(x)− Em−1(x)Dm+k(x) = xαm−1Ek(x) (3.24)

Em+k(x)Em+l−1(x)−Em−1(x)Em+k+l(x) = Ek(x)El−1(x)α
m (3.25)

Em(x)2 −Em−1(x)Em+1(x) = αm (3.26)

Dm+k(x)Dm+l−1(x)−Dm−1(x)Dm+k+l(x) = Ek(x)[xDl(x)− 2Dl+1(x)] (3.27)

Dm(x)2 −Dm−1(x)Dm+1(x) = αm−1(2α− x2). (3.28)
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