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Abstract. We generalize Zeckendorf’s Theorem to represent points in Z
k−1, uniquely, as

sums of elements of order-k linear recurrences.

1. Background and Definitions

Throughout this paper, k ≥ 2 is a fixed integer.

Definition 1. The k-bonacci sequence {Xn} is given by the recurrence

Xn = 0 for −k + 2 ≤ n ≤ 0,

X1 = 1,

Xn =

k∑

i=1

Xn−i for all n ∈ Z . (1)

When k = 2, {Xn} is the Fibonacci sequence, when k = 3 the tribonacci sequence, and so
on. Our purpose herein is to generalize the following well-known theorem [5] (see also [2, 3,
4] 1.

Theorem 1. Zeckendorf’s Theorem. Every nonnegative number, n, is a unique sum of
distinct k-bonacci numbers:

n =
∑

i≥2

ciXi

such that ci ∈ {0, 1} for all i, and no string of k consecutive ci’s are equal to 1.

Definition 2. Call a sequence {ci} satisfying the constraints of Theorem 1 a satisfying
sequence and such a representation a satisfying representation (SR).

Definition 3. The k-bonacci vectors, ~Xi ∈ Z
k−1, are given by the recurrence

~X0 = ~0,

~X−i = ~ei for 1 ≤ i ≤ k − 1 (the standard unit vectors),

~Xn =

k∑

i=1

~Xn−i for all n ∈ Z. (2)

We use the ~Xn with n ≤ 0. For this use—i.e., working backwards—rewrite the above
recurrence, Equation (2), as the following

~Xn = ~Xn+k −
k−1∑

i=1

~Xn+i. (3)

1Strictly speaking, Zeckendorf’s Theorem applies to the Fibonacci numbers (k = 2), but the proof via greedy
change-making applies without change to k-bonacci numbers.
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Here is a list of the first few tribonacci vectors (i.e., k = 3). See also Figure 2.

~X0 = (0, 0)

~X−1 = (1, 0)

~X−2 = (0, 1)

~X−3 = (−1,−1)

~X−4 = (2, 0)

~X−5 = (−1, 2)

~X−6 = (−2,−3)

~X−7 = (5, 1)

~X−8 = (−4, 4)

~X−9 = (−3,−8)

2. Main Theorem

Theorem 2. Every ~v ∈ Z
k−1 has a unique SR in the sense of Theorem 1, namely, ~v =∑

i≥1 ci
~X−i.

Before proving Theorem 2, we establish some machinery.

Definition 4. For n ≥ k − 2, Sn : Zk−1 → [0,Xn) is the scalar product

Sn(~v) = ~v · (Xn−1, . . . ,Xn−(k−1)) (mod Xn).

Lemma 3. Sn(
∑p

i=1 ci
~X−i) ≡

∑p
i=1 ciXn−i (mod Xn).

Proof. Sn(~X−i) ≡ Xn−i (mod Xn) for 0 ≤ i ≤ k − 1, by definition, and for i ≥ k, by the

recursive definitions of Xi and ~Xi. The proof of this Lemma then follows by linearity. �

Definition 5. A nearly satisfying representation (NSR) for ~v ∈ Z
k−1 is a sum, ~v =∑

i≥1 ci
~X−i, for which ci ∈ {0, 1, 2} for all i, such that

(1) the blocks of consecutive non-zero values of ci all have length less than k, and
(2) only a single such block contains any 2’s.

Our proof of Theorem 2 involves manipulating the coefficients of NSRs using analogs of the
grade-school arithmetic carrying and borrowing concepts.

Definition 6. If ~v =
∑

i≥1 ci
~X−i is any representation of ~v then

(1) Carrying into ci increments ci by 1 and decrements ci+1, . . . , ci+k by 1.
(2) Borrowing from ci, conversely, decrements ci by 1 and increments ci+1, . . . , ci+k by 1.

Both operations leave the sum unchanged.

We will carry into ci when ci = 0 and ci+1, . . . , ci+k are all positive which will shorten the
lengths of blocks of non-zero coefficients. We will borrow from ci when ci = 2 (which will
necessitate future carrying).

Here is an illustration of carrying and borrowing. We start with the SR of (2,−2) =
~X−2 + ~X−3 + ~X−6 + ~X−7 (line 1 in the following table), add (−1,−1) = ~X−3, to get an NSR

(line 2), borrow once and carry twice, achieving the SR (1,−3) = ~X−1 + ~X−4 + ~X−6 (line 5).
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line c1 c2 c3 c4 c5 c6 c7 comment

1 0 1 1 0 0 1 1 (2,−2) = ~X−2 + ~X−3 + ~X−6 + ~X−7

2 0 1 2 0 0 1 1 (2,−2) + ~X−3 = (1,−3)
3 0 1 1 1 1 2 1 Result of borrowing from c3
4 1 0 0 0 1 2 1 Result of carrying into c1
5 1 0 0 1 0 1 0 Result of carrying into c4

Lemma 4. Suppose ~v =
∑

i≥1 ci
~X−i is any representation of ~v ∈ Z

k−1 with ci ≥ 0 for all i.

Then there is a representation ~v =
∑

i≥1 c
′
i
~X−i with c′i ≥ 0 for all i such that every block of

positive coefficients has length less than k.

Proof. Iteratively locate any block of positive coefficients (ci+1, . . . , ci+j) with j ≥ k and ci = 0
(we can always assume c0 = 0), and carry into ci. Since each carrying reduces

∑
i≥1 ci, the

process terminates. �

We are now prepared to prove Theorem 2.

Proof. Uniqueness. It is easy to see that the function Sn is one-to-one on satisfying represen-

tations of the form
∑n−1

i=1 ci ~X−i (Lemma 3), thus two such different representations cannot be
equal.

Existence. We use induction as follows: ~0 ∈ Z
k−1 has an SR, and whenever ~v has an SR,

then, as we shall show, so do ~v + ~ei for 1 ≤ i ≤ k − 1 (which proves that any vector with
non-negative coordinates has an SR) and ~v−~e1−· · ·−~ek−1 (which then proves that all vectors

have an SR). Because, from Definition 3, ~X−i = ~ei, for 1 ≤ i ≤ k − 1, and, from Equation

(3), ~X−k = −~e1 − · · · − ~ek−1, these inductive steps involve incrementing some coefficient in a
satisfying representation by one, which we repair using carrying and borrowing.

In case this increment only changes a 0 to a 1, Lemma 4 applies and iterated carrying yields
an SR.

Otherwise the increment yields an NSR, which we repair as follows. Denote the block of 1’s
and 2’s by (ci+1, . . . , ci+j) such that ci = ci+j+1 = 0. Borrow from ci+p, such that ci+p = 2,
and for any q > i + p, cq < 2. This borrowing will create a block of k or more positive
coefficients, so next carry into ci, and continue carrying into lower-subscripted coefficients if
necessary to assure all blocks of positive coefficients with lower coefficients than i are shorter
than k. This borrowing and carrying can have three different outcomes:

(1) The borrowing changes no 1’s to 2’s beyond the coefficients in the block (ci+1, . . . , ci+j).
In this case, the coefficients have been transformed in an SR, and the process termi-
nates.

(2) The borrowing creates a block of positive coefficients of length at least 2k. In this case,
two carrying operations remove all the 2’s, and the process terminates. (This occurs
in our illustration above.)

(3) The borrowing followed by one carrying step leaves at least one cm = 2, for some m >

i+ j. Denote the new block of 1’s and 2’s by (ci′+1, . . . , ci′+j′), where ci′ = ci′+j′+1 = 0
and i′ + 1 ≤ m ≤ i′ + j′. Let M denote the largest index such that cM > 0. We have
moved our block of 1’s and 2’s closer to M ; i.e., M − (i′ + j′) < M − (i+ j). Hence by
induction, this process must terminate.

�
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Corollary 5. Suppose ~v =
∑M

1 ci ~X−i and ~v′ = ~v + ~X−p =
∑M ′

1 c′i
~X−i are two SRs and

p ≤ M . Then M ′ −M ≤ k.

Proof. The final borrowing operation used to convert an NSR to an SR can only extend non-
zero values at most k positions past cM . �

Figure 2 suggests Corollary 5. Region DM is completely surrounded by region DM+3 for
0 ≤ M ≤ 6.

Theorem 2 generalizes M. W. Bunder’s result [1]: “Every integer can be represented uniquely
as a sum of nonconsecutive negatively subscripted Fibonacci numbers.”

3. Illustrations with the Tribonacci Sequence

The sequence {ci} in Theorem 2 is essentially a k-Zeckendorf representation for non-negative
integers so that the theorem gives a natural one-to-one correspondence between Z

k−1 and Z
+.

The following table for k = 3 shows this, matching Figures 1–3. (Z(n) is the tribonacci
Zeckendorf representation of n.)

n Z(n) {ci} vector ∈ Z
2

0 0 00000... (0, 0)
1 1 10000... (1, 0)
2 10 01000... (0, 1)
3 11 11000... (1, 1)
4 100 00100... (−1,−1)
5 101 10100... (0,−1)
6 110 01100... (−1, 0)
7 1000 00010... (2, 0)

In this Section k = 3, Xi is the ith tribonacci number and ~X−n we call the −nth tribonacci
vector.

Definition 7. Let Dn = {~v ∈ Z
2 | ~v =

∑n
i=1 ci

~X−i}, i.e., the points with an n-bit represen-
tation. By this definition, the number of points in Dn is |Dn| = Xn+2.

Figure 1 illustrates domainsD1, . . . ,D7. Figure 2 gives another view ofD0,D1, . . . ,D9 along

with a spiral connecting the vectors ~X0, ~X−1, . . . , ~X−9. Figure 3 shows how these regions reflect
the tribonacci recurrence: Xn = Xn−1 +Xn−2 +Xn−3.

Figure 1. Regions D1, . . . ,D7. The black squares indicate ~0 ∈ Z
2.
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Figure 2. Regions D0,D1, . . . ,D9 and the spiral connecting ~X0, ~X−1, . . .,
~X−9, which are indicated by black dots. The bulls-eye indicates ~0 = ~X0.

Figure 3. Illustrating the tribonacci recurrence: D14 = D13t(~X−13+D12)t

(~X−13 + ~X−12 +D11). The black square indicates ~0 ∈ Z
2. The white squares

indicate the translation vectors ~X−13 and ~X−13 + ~X−12.
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