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Abstract. Let r ≥ 1 be an integer. The r-generalized Fibonacci sequence {Gn} is defined
as

Gn =











0, if 0 ≤ n < r − 1;

1, if n = r − 1;

Gn−1 +Gn−2 + · · ·+Gn−r, if n ≥ r.

We will present several identities and congruences involving r-generalized Fibonacci numbers.

1. Introduction

Definition 1.1. Let r ≥ 1 be an integer. The r-generalized Fibonacci sequence {Gn} is defined

as

Gn =











0, if 0 ≤ n < r − 1;

1, if n = r − 1;

Gn−1 +Gn−2 + · · · +Gn−r, if n ≥ r.

This definition is not new. According to Dickson [2, p. 409], M. d’Ocagne, in a series of
papers from 1883 to 1890, considered (with slightly different notation) the sequence {Ui} with

Un = c1Un−1 + c2Un−2 + · · ·+ crUn−r

and U0, . . . , Ur−1 arbitrary. He also considered the sequence {un} satisfying the same recur-
rence, with ui = 0 (i = 0, . . . , r− 2), ur−1 = 1, and he found a relationship between {Un} and
{un}. Evidently r and the ci’s are fixed in these definitions. According to Dickson, for each
sequence d’Ocagne “found the sum of any fixed number of consecutive terms and the limit of
that sum”. In one of the papers involving continued fractions each ci = 1.

More recently (1960), Miles [6] used Definition 1.1 in a paper involving k× k matrices with
k-generalized Fibonacci numbers for elements. Kessler and Schiff [4] stated that the Miles
article seems to be the oldest well-known paper on the generalized numbers. Since 1960 many
more papers involving the r-generalized Fibonacci numbers have appeared, including several
in The Fibonacci Quarterly. See [3] and [4] for example. Kessler and Schiff [4] gave many
interesting and relevant references, and they noted that an exhaustive bibliography of these
numbers would cover pages.

Though Definition 1.1 is not new, the authors believe that most of the results in this paper
are new, or at least not well-known. All of the proofs are original.

In Section 2 we will prove an identity that enables us to find congruences modulo 2k for the
r-generalized Fibonacci sequence. In Section 3 we prove several identities, including a formula
for the sum of the squares of the Gn’s. In Section 4 we find formulas for G2n and G2n+1,
and in Section 5 we prove some miscellaneous results. A table for the r-generalized Fibonacci
numbers, for 2 ≤ r ≤ 8 can be found in Section 6. Finally, in Section 7 we present possible
topics for future research.
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2. An Identity and Congruences for {Gn}

Theorem 2.1. For n ≥ r + 1,

Gn = 2Gn−1 −Gn−r−1.

Proof.

Gn = Gn−1 +Gn−2 + · · ·+Gn−r + 0

= Gn−1 +Gn−2 + · · ·+Gn−r

+Gn−1 −Gn−2 − · · · −Gn−r −Gn−r−1

= 2Gn−1 −Gn−r−1.

�

We note that Gabai [3] stated Theorem 2.1 without proof.

Theorem 2.2. For r ≤ n ≤ 2r − 1,
Gn = 2n−r.

For 0 ≤ n ≤ r,

G2r+n = 2n+r − (n+ 2)2n−1.

Proof. From Theorem 2.1, we have, for r ≤ n ≤ 2r − 1,

Gn = 2Gn−1 = 22Gn−2 = · · · = 2n−rGr = 2n−r.

We now note that

G2r = 2G2r−1 −Gr−1 = 2(2r−1)− 1 = 2r − 1.

Assume n > 0, and assume the theorem is true for G2r+n−1. If r ≥ n, then 2r−1 ≥ r+n−1 ≥ r,
so Gr+n−1 = 2n−1 by the first part of Theorem 2.2. We have

G2r+n = 2G2r+n−1 −Gr+n−1 = [2n+r − (n+ 1)2n−1]− 2n−1 = 2n+r − (n+ 2)2n−1.

�

In a similar way we can prove the following results.
If 0 ≤ n ≤ r + 1, then

G3r+n = 22r+n − (r + n+ 2)2r+n−1 +

[(

n+ 2

2

)

− 1

]

2n−2.

If 0 ≤ n ≤ r + 2, then

G4r+n = 23r+n − (2r + n+ 2)22r+n−1 +

[(

r + n+ 2

2

)

− 1

]

2r+n−2 −

[(

n+ 2

3

)

− n

]

2n−3.

The general theorem is

Theorem 2.3. Let m = kr + n, with 0 ≤ n ≤ r + k − 2, and k ≥ 2. Then

Gm = 2m−r +

k−1
∑

j=1

(−1)jam,j2
m−(j+1)r−j

where

am,j = am−1,j + am−r−1,j−1

with ai,0 = 1 for all i, ai,1 = 0 for i < 2r, and a2r,1 = 2.

232 VOLUME 49, NUMBER 3



SOME IDENTITIES FOR r-FIBONACCI NUMBERS

For example, in the Fibonacci case (r = 2) the recurrence for the coefficients is

am,j = am−1,j + am−3,j−1

and we can construct a triangle (like Pascal’s) to quickly get

a10,0 = 1, a10,1 = 8, a10,2 = 14, a10,3 = 2, so

F10 = G10 = 28 − (8)25 + (14)22 − (2)2−1 = 55.

Theorem 2.4. For r ≥ 2 and m ≥ 2r,

Gm = 2m−r +

bm+r

r+1
c−1

∑

j=1

(−1)j
[(

m− rj − r + 2

j

)

−

(

m− rj − r

j − 2

)]

2m−(r+1)j−r.

Before looking at the proof, here are some congruences we get by looking at the last term
in the summation. We assume k > 1 in the proofs of congruences (2.1)–(2.4), and we can use
Theorem 2.2 to verify the cases k = 0 and k = 1.

Case 1: m = (r + 1)k. Then bm+r
r+1 c − 1 = k − 1, and m − (r + 1)

(

bm+r
r+1 c − 1

)

− r = 1.

In the last term
(

m−kr+2
k−1

)

−
(

m−kr
k−3

)

=
(

k+2
3

)

−
(

k
3

)

= k2. The exponent of 2 in the next to last
term is r + 2. Thus:

G(r+1)k ≡ (−1)k−12k2 (mod 2r+2). (2.1)

Case 2: m = (r+1)k+t, 0 < t < r+1. Then bm+r
r+1 c−1 = k, and m−(r+1)

(

bm+r
r+1 c − 1

)

−

r = t − r. In the last term
(

m−rk−r+2
k

)

−
(

m−rk−r
k−2

)

= 0 if 0 < t < r − 1. In this case the
exponent of 2 in the next to last term is t+ 1. Thus

G(r+1)k+t ≡ 0 (mod 2t+1), if 0 < t < r − 1. (2.2)

If t = r − 1, then
(

m−rk−r+2
k

)

−
(

m−rk−r
k−2

)

= (k + 1)− (k − 1) = 2. Since the exponent of 2 in
the next to last term is r, we have

G(r+1)k+(r−1) ≡ (−1)k (mod 2r). (2.3)

If t = r, then
(

m−rk−r+2
k

)

−
(

m−rk−r
k−2

)

=
(

k+2
k

)

−
(

k
k−2

)

= 2k + 1. Thus

G(r+1)k+r ≡ (−1)k(2k + 1) (mod 2r+1). (2.4)

Proof of Theorem 2.4. We first prove that in Theorem 2.3, the upper limit of the summation,
k − 1, can be replaced by bm+r

r+1 c − 1.

Case 1: m = (r + 1)j + t, with 1 ≤ t ≤ r. In this case m = r(j + 1) + (j − r + t), so

k = j + 1. It is easy to verify that bm+r
r+1 c = b (r+1)j+r+t

r+1 c = j + 1 = k.

Case 2: m = (r + 1)j. In this case, m = rj + j, so k = j. It is easy to verify that

bm+r
r+1 c = b (r+1)j+r

r+1 c = j = k.

Now we will use Theorem 2.3 to prove Theorem 2.4. Recall an,0 = 1 for all n, and an,1 = 0
for n < 2r. We know that G2r = 2r − 1 = 2r − a2r,1 · 2

−1, so a2r,1 = 2. Using the recurrence

am,j = am−1,j + am−r−1,j−1
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it is easy to see that

am,1 = m− 2r + 2 =

(

m− 2r + 2

1

)

−

(

m− 2r

−1

)

(m ≥ 2r).

Note that the second binomial coefficient is 0.
Now we use induction on j. Suppose we know that for h = 1, . . . , j

am,h =

(

m− rh− r + 2

h

)

−

(

m− rh− r

h− 2

)

.

Then

am,j+1 = am−1,j+1 + am−r−1,j

= am−1,j+1 +

(

m− r(j + 1)− r + 1

j

)

−

(

m− r(j + 1)− r − 1

j − 2

)

= am−2,j+1 +

(

m− r(j + 1)− r + 1

j

)

−

(

m− r(j + 1)− r − 1

j − 2

)

+

(

m− r(j + 1)− r

j

)

−

(

m− r(j + 1)− r − 2

j − 2

)

· · · · · · · · · · · · · · · · · ·

= a(j+2)r+j−1,j+1 +

m−r(j+1)−r+1
∑

i=j+1

[(

i

j

)

−

(

i− 2

j − 2

)]

.

Since a(j+2)r+j−1,j+1 = 0, we have

am,j+1 =

m−r(j+1)−r+1
∑

i=j

[(

i

j

)

−

(

i− 2

j − 2

)]

=

(

m− r(j + 1)− r + 2

j + 1

)

−

(

m− r(j + 1)− r

j − 1

)

.

Here we have used the identity
n
∑

i=j

(

i

j

)

=

(

n+ 1

j + 1

)

.

This completes the induction argument. �

Notice that the induction argument works in the case j = 1, since in that case we have

am,2 =
m−3r+1
∑

i=2

(

i

1

)

=
m−3r+1
∑

i=1

(

i

1

)

− 1 =

(

m− 3r + 2

2

)

−

(

m− 3r

0

)

.

We have used the fact that am,j = 0 for m < (j + 1)r + (j − 1). For example am,1 = 0 if
m < 2r; am,2 = 0 if m < 3r + 1, etc. This follows from the recurrence for am,j . Note that we
have used the convention

(

a
b

)

= 0 if a < b or if either a or b is negative.
When r = 2 in Theorem 2.4, we have the following formula for the Fibonacci numbers.

Theorem 2.5. For m ≥ 2,

Fm = 2m−2 +

bm+2

3
c−1

∑

j=1

(−1)j
[(

m− 2j

j

)

−

(

m− 2j − 2

j − 2

)]

2m−3j−2.
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Corresponding to (2.1), (2.3), (2.4), the congruences for the Fibonacci numbers (for k ≥ 0)
are:

F3k ≡ (−1)k−12k2 (mod 16), (2.5)

F3k+1 ≡ (−1)k (mod 4), (2.6)

F3k+2 ≡ (−1)k(2k + 1) (mod 8). (2.7)

If we look at the last two terms of the summation in Theorem 2.5, we see that

F3k+1 ≡ (−1)k + (−1)k(10k)(k + 1)(2k + 1) (mod 32).

Thus, if k ≡ 0 or 3 (mod 4),

F3k+1 ≡ (−1)k (mod 8).

If k ≡ 1 or 2 (mod 4),

F3k+1 ≡ (−1)k5 (mod 8).

The A array in Theorem 2.3 and Theorem 2.4 is interesting. For r = 2, the Fibonacci case,
the A array is

m\j 0 1 2 3 4 5
1 1 0 0 0 0 0
2 1 0 0 0 0 0
3 1 0 0 0 0 0
4 1 2 0 0 0 0
5 1 3 0 0 0 0
6 1 4 0 0 0 0
7 1 5 2 0 0 0
8 1 6 5 0 0 0
9 1 7 9 0 0 0
10 1 8 14 2 0 0
11 1 9 20 7 0 0
12 1 10 27 16 0 0
13 1 11 35 30 2 0
14 1 12 44 50 9 0
15 1 13 54 77 25 0

am,j for r = 2 (Fibonacci case).

For r = 3, the Tribonacci case, the Tribonacci A array is similar to the Fibonacci A array;
there are just more 0’s at the top of each column.

Condensing the A array in the Fibonacci case to a B array by defining bm,j = am+3j,j we
have the following B array.
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m\j 0 1 2 3 4 5
1 1 2 2 2 2 2
2 1 3 5 7 9 11
3 1 4 9 16 25 36
4 1 5 14 30 55 91
5 1 6 20 50 105 196
6 1 7 27 77 182 378
7 1 8 35 112 294 672
8 1 9 44 156 450 1122
9 1 10 54 210 660 1782
10 1 11 65 275 935 2717
11 1 12 77 352 1287 4004
12 1 13 90 442 1729 5733
13 1 14 104 546 2275 8008
14 1 15 119 665 2940 10948
15 1 16 135 800 3740 14688

B array.

The first column of the B array is 1 and after the first entry, the first row is 2. Entries in the
middle of the B array can be determined by adding the elements in the B array immediately
to its left and directly above the entry, i.e.,

bm,j = bm,j−1 + bm−1,j .

A closed form formula for bm,j is

m(m+ 1) · · · (m+ j − 2)(m+ 2j − 1)

j!
.

Here, we assume the j = 1 column is

m+ 1

1!
.

The entries in the j = 2 column of B are A000096 in Sloane’s OEIS [7]. The j = 3 column of
B is A005581 in Sloane’s OEIS [7] and the j = 4 column of B is A005582 in Sloane’s OEIS
[7].

3. The Sum of the Squares and Other Identities

Theorem 3.1. For n ≥ 2r − 1,

Gn = 2r−1Gn−r+1 −
r−1
∑

k=1

2k−1Gn−r−k.
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Proof. We iterate r − 1 times the recurrence in Theorem 2.1:

Gn = 2Gn−1 −Gn−r−1 = 2(2Gn−2 −Gn−r−2)−Gn−r−1

= 22Gn−2 − 2Gn−r−2 −Gn−r−1

= 22(2Gn−3 −Gn−r−3)− 2Gn−r−2 −Gn−r−1

= 23Gn−3 − 22Gn−r−3 − 2Gn−r−2 −Gn−r−1

· · · · · · · · · · · · · · · · · ·

= 2r−1Gn−r+1 −
r−1
∑

k=1

2k−1Gn−r−k.

�

Theorem 3.2. For r ≥ 2 and n ≥ 2r − 1,

Gn = 2r−1Gn−r +

r−1
∑

k=1

(

r−1
∑

i=k

2i−1

)

Gn−r−k.

For the Fibonacci sequence, this identity is

Fn = 2Fn−2 + Fn−3.

Listing this identity for r = 2, 3, 4, 5, and 6 we have the resulting formulas.

r = 2 : Gn = 2Gn−2 +Gn−3

r = 3 : Gn = 4Gn−3 + 3Gn−4 + 2Gn−5

r = 4 : Gn = 8Gn−4 + 7Gn−5 + 6Gn−6 + 4Gn−7

r = 5 : Gn = 16Gn−5 + 15Gn−6 + 14Gn−7 + 12Gn−8 + 8Gn−9

r = 6 : Gn = 32Gn−6 + 31Gn−7 + 30Gn−8 + 28Gn−9 + 24Gn−10 + 16Gn−11.

Proof of Theorem 3.2. From Theorem 3.1, we have

Gn = 2r−1Gn−r+1 −
r−1
∑

k=1

2k−1Gn−r−k.

Thus, by Definition 1.1 applied to Gn−r+1, we have (note that the 1’s cancel in the first
equation):

Gn = 2r−1Gn−r +

r−1
∑

k=1

(2r−1 − 1)Gn−r−k −

r−1
∑

k=1

(2k−1 − 1)Gn−r−k

= 2r−1Gn−r +
r−1
∑

k=1

(

r−1
∑

i=1

2i−1

)

Gn−r−k −
r−1
∑

k=1

(

k−1
∑

i=1

2i−1

)

Gn−r−k

= 2r−1Gn−r +
r−1
∑

k=1

(

r−1
∑

i=k

2i−1

)

Gn−r−k.

�
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Theorem 3.3. For r ≥ 2, n ≥ 0,

n
∑

k=0

G2
k +

r−1
∑

i=2

n−i
∑

k=0

GkGk+i = GnGn+1.

The special case of this identity for the Fibonacci sequence was discovered by Lucas in 1876.
He discovered that for n ≥ 0,

n
∑

i=1

F 2
i = FnFn+1.

Its proof can be found in [5, pp. 77–78].

Proof. For j = n, n− 1, . . . , r − 1, we start with

Gj = Gj+1 −Gj−1 −Gj−2 − · · · −Gj−r+1

and multiply by Gj to get

G2
n = GnGn+1 −GnGn−1 − · · · −GnGn−i − · · · −GnGn−r+1,

G2
n−1 = Gn−1Gn −Gn−1Gn−2 − · · · −Gn−1Gn−1−i − · · · −Gn−1Gn−r,

· · · · · · · · · · · · · · · · · ·

G2
r−1 = Gr−1Gr −Gr−1Gr−2 − · · · −Gr−1Gr−1−i − · · · −Gr−1G0.

When we add, we get
∑n

k=0G
2
k on the left side, and all of the nonzero terms in columns 1 and

2 on the right side cancel except for GnGn+1. The i+ 1 column is −
∑n−i

k=0GkGk+i and since
2 ≤ i ≤ r − 1,

n
∑

k=0

G2
k +

r−1
∑

i=2

n−i
∑

k=0

GkGk+i = GnGn+1.

�

We note that Gabai [3] proved a result equivalent to Theorem 3.3.

4. Formulas for G2n and G2n+1

Theorem 4.1. For r ≥ 2, n > 0, m > 0,

Gn+m = GnGm +GnGm−1 +Gn−1Gm +

r−2
∑

i=1

Gn+iAi,

where

Ai =

{

Gm+r−i−1 −Gm+r−i−2 − · · · −Gm+1 (i < r − 2);

Gm+1 (i = r − 2).

Before giving the proof, here are some applications. If we let m = n, we have:

r = 2 : F2n = F 2
n + 2Fn−1Fn

r = 3 : G2n = G2
n +G2

n+1 + 2Gn−1Gn

r = 4 : G2n = G2
n −G2

n+1 + 2Gn−1Gn + 2Gn+1Gn+2

r = 5 : G2n = G2
n −G2

n+1 +G2
n+2 + 2Gn−1Gn − 2Gn+1Gn+2 + 2Gn+1Gn+3.
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If we let m = n+ 1, we have (after a little manipulation)

r = 2 : F2n+1 = F 2
n + F 2

n+1

r = 3 : G2n+1 = G2
n +G2

n+1 + 2Gn−1Gn+1 + 2GnGn+1

r = 4 : G2n+1 = G2
n +G2

n+1 +G2
n+2 + 2Gn−1Gn+1 + 2GnGn+1

r = 5 : G2n+1 = G2
n +G2

n+1 −G2
n+2 + 2Gn−1Gn+1 + 2GnGn+1 + 2Gn+2Gn+3.

Proof. We will use Zhou’s “Theory of Constructing Identities” (TCI) [8].
Let Fr(x) = xr − xr−1 − · · · − x− 1. Then clearly

Fr(x)
m−1
∑

i=0

Gn+ix
m−1−i ≡ 0 (mod Fr(x)).

That is, modulo Fr(x):

0 ≡ (xr − xr−1 − · · · − x− 1)(Gnx
m−1 +Gn+1x

m−2 + · · ·+Gn+m−rx
r−1 + · · ·+Gn+m−1)

≡ Gnx
m+r−1 + (Gn+1 −Gn)x

m+r−2 + (Gn+2 −Gn+1 −Gn)x
m+r−3 + · · ·

+ (Gn+r−2 −Gn+r−3 − · · · −Gn)x
m+1 + (Gn+r−1 −Gn+r−2 − · · · −Gn)x

m

+ 0 · xm−1 + 0 · xm−2 + · · ·+ 0 · xr − (Gn+m−1 +Gn+m−2 + · · ·

+Gn+m−r)x
r−1 − · · · −Gn+m−1.

By TCI, we can replace xk by Gk and congruence is changed to equality. Thus

GnGm+r−1 + (Gn+1 −Gn)Gm+r−2 + (Gn+2 −Gn+1 −Gn)Gm+r−3 + · · · (4.1)

+ (Gn+r−2 −Gn+r−3 − · · · −Gn)Gm+1 +Gn−1Gm −Gn+m = 0.

Notice we have used the identities

Gn+r−1 −Gn+r−2 − · · · −Gn = Gn−1 (in the xm term),

− (Gn+m−1 +Gn+m−2 + · · ·+Gn+m−r) = −Gn+m (in the xr−1 term),

Gr−1 = 1; Gi = 0 for i < r − 1.

To simplify further, use

Gm+r−1 = Gm+r−2 +Gm+r−3 + · · · +Gm+1 +Gm +Gm−1

in the first term of (4.1) and notice that all the other Gn terms are −(Gm+r−2 + Gm+r−3 +
· · ·+Gm+1)Gn. Thus the Gn terms are reduced to

GnGm +GnGm−1.

Now for i = 1, . . . , r − 3, we get all the Gn+i terms together:

(Gm+r−i−1 −Gm+r−i+2 − · · · −Gm+1)Gn+i

and we note that the only term with Gn+r−2 is Gm+1Gn+r−2. This completes the proof. �
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5. Miscellaneous Results

(a) “Lucas numbers”.

Define Kn = 0 for 0 ≤ n ≤ r − 3, Kr−2 = a, Kr−1 = b and Kn =
∑n−1

i=n−r Ki if n ≥ r. Let

K(x) be the generating function K(x) =
∑∞

i=0Kix
i. It is easy to see that

K(x) =
axr−2 + (b− a)xr−1

1− x− x2 − · · · − xr
.

Note that if a = 0 and b = 1, then Kn = Gn, and we use the notation K(x) = G(x). From
the generating functions, it is easy to see that

Kn = aGn+1 + (b− a)Gn.

In particular, if a = 2, b = 1, we get the “Lucas” sequence {Ln}:

L(x) =
2xr−2 − xr−1

1− x− x2 − · · · − xr
=

∞
∑

i=0

Lix
i

which gives

Ln = 2Gn+1 −Gn.

Since x
2−x

L(x) = G(x), we have

Gn =

n−1
∑

i=0

(

1

2

)n−i

Li.

(b) Relationship between G
(r)
n and G

(r+1)
n .

For fixed r, write G(x) = Gr(x) and Gn = G
(r)
n ; likewise L(x) = Lr(x) and Ln = L

(r)
n . Since

Gr(x)

Gr+1(x)
=

1

x

[

1−
xr+1

1− x− x2 − · · · − xr

]

,

we have

xGr(x) = Gr+1(x)− x2Gr(x)Gr+1(x),

which gives

G
(r+1)
n+1 = G(r)

n +
n−1
∑

i=0

G
(r)
i G

(r+1)
n−1−i.

For example, when r = 2

G
(3)
n+1 = Fn +

n−1
∑

i=0

FiG
(3)
n−1−i.

Similarly we have

Lr+1(x) = xLr(x) + x2Lr+1(x)Gr(x)

so

L
(r+1)
n+1 = L(r)

n +

n−1
∑

i=0

L
(r+1)
i G

(r)
n−1−i.
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The case r = 1 gives the well-known formulas

Fn+1 = 1 +
n−1
∑

i=0

Fi, Ln+1 = 1 +
n−1
∑

i=0

Li.

(c) Another example using Zhou’s TCI.

If we use Zhou’s Theory of Constructing Identities on Gn = 2Gn−1 −Gn−1−r, we have

(xr+1 − 2xr + 1)(Gnx
m−1 +Gn+1x

m−2 + · · ·+Gn−m−1) ≡ 0 (mod xr+1 − 2xr + 1).

Simplifying as we did before, we get

Gn+m = Gn+m−r +GnGm+r −

r−1
∑

i=0

Gn−1−iGm+i,

which could be written

Gn+m+1 −Gn+m = GnGm+r −

r−1
∑

i=0

Gn−1−iGm+i,

or

G2n = G2n−r +GnGn+r −

r−1
∑

i=0

Gn−1−iGn+i.

6. Table of r-Generalized Fibonacci Numbers

The first few terms of the r-generalized Fibonacci sequence for 2 ≤ r ≤ 8 are given in the
following table.

r-generalized Fibonacci Sequences

r\n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
3 0 0 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136
4 0 0 0 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872
5 0 0 0 0 1 1 2 4 8 16 31 61 120 236 464 912 1793
6 0 0 0 0 0 1 1 2 4 8 16 32 63 125 248 492 976
7 0 0 0 0 0 0 1 1 2 4 8 16 32 64 127 253 504
8 0 0 0 0 0 0 0 1 1 2 4 8 16 32 64 128 255

The r-generalized Fibonacci sequences for r = 2, 3, 4, 5, 6, 7, 8 can be found in Sloane [7] as
sequences A000045, A000073, A000078, A001591, A001592, A122189, and A079262, respec-
tively.
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7. Topics for Future Study

Many of the theorems, like Theorem 3.3, can undoubtedly be proved using combinatorial
arguments in the manner of Benjamin and Quinn [1]. In fact, Gn+r−1 (for n ≥ 0) counts the
number of tilings of an n-board with tiles of length at most r. It would be interesting to see
different approaches to our theorems.

The r-generalized Lucas sequence could obviously be examined more thoroughly, and more
relationships to the r-generalized Fibonacci numbers can probably be found.

The more general recurrence

Gn = c1Gn−1 + c2Gn−2 + · · ·+ crGn−r,

where the ci’s are constants, can certainly be studied in more detail.
We leave all of these topics for future research.
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