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Abstract. In this paper, we show that there are infinitely many Sierpiński numbers in the
sequence of Lucas numbers. We also show that there are infinitely many Riesel numbers in the
sequence of Lucas numbers. Finally, we show that there are infinitely many Lucas numbers
that are not a sum of two prime powers.

1. Introduction

In 1960, W. Sierpiński [8] showed that there are infinitely many odd positive integers k

with the property that k · 2n + 1 is composite for all positive integers n. Such an integer
k is called a Sierpiński number in honor of Sierpiński’s work. Two years later, J. Selfridge
(unpublished) showed that 78557 is a Sierpiński number. To this day, this is the smallest
known Sierpiński number. As of this writing, there are six candidates smaller than 78557 to
consider: 10223, 21181, 22699, 24737, 55459, 67607. See http://www.seventeenorbust.com

for the most up-to-date information.
Riesel numbers are defined in a similar way: an odd positive integer k is Riesel if k ·2n−1 is

composite for all positive integers n. These were first investigated by H. Riesel in 1956 [7]. The
smallest known Riesel number is 509203. As of this writing there are 62 remaining candidates
smaller that 509203 to consider. See http://www.prothsearch.net/rieselprob.html for
the most recent information.

The usual approach for constructing Sierpiński or Riesel numbers is to use a covering –
a finite set of congruences with the property that every integer satisfies at least one of the
congruences.

Consider the implications in Table 1 below.

n ≡ 0 (mod 2) & k ≡ 1 (mod 3) =⇒ k · 2n − 1 ≡ 0 (mod 3)
n ≡ 0 (mod 3) & k ≡ 1 (mod 7) =⇒ k · 2n − 1 ≡ 0 (mod 7)
n ≡ 1 (mod 4) & k ≡ 3 (mod 5) =⇒ k · 2n − 1 ≡ 0 (mod 5)
n ≡ 11 (mod 12) & k ≡ 2 (mod 13) =⇒ k · 2n − 1 ≡ 0 (mod 13)
n ≡ 7 (mod 36) & k ≡ 4 (mod 73) =⇒ k · 2n − 1 ≡ 0 (mod 73)
n ≡ 19 (mod 36) & k ≡ 18 (mod 37) =⇒ k · 2n − 1 ≡ 0 (mod 37)
n ≡ 31 (mod 36) & k ≡ 13 (mod 19) =⇒ k · 2n − 1 ≡ 0 (mod 19)

Table 1

The congruences for n listed in Table 1 cover all possibilities for n; that is, this set of
congruences forms a covering. As the moduli of the congruences involving k are relatively
prime, the Chinese Remainder Theorem allows us to combine all of the congruences for k into
one statement: k ≡ 33737173 (mod 3 · 7 · 5 · 13 · 73 · 37 · 19). For any of the infinitely many
positive integer values of k in this arithmetic progression, we have that k · 2n − 1 has a prime
divisor from the set S = {3, 5, 7, 13, 19, 37, 73}. Moreover, as k is large enough, k · 2n − 1 can-
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not be equal to any element of S, and hence k · 2n − 1 must be composite. Therefore, each
such k is a Riesel number.

Luca and Mej́ıa-Huguet take this one step further, finding Riesel and Sierpiński numbers
embedded in the Fibonacci sequence [4]. That is, they replace k with Fk, where F0 = 0,
F1 = 1 and Fi = Fi−1+Fi−2 for i ≥ 2. First, to ensure Fk is odd, note that the only Fibonacci
numbers which are even are those satisfying k ≡ 0 (mod 3). In order to have Fk be a Riesel
number (using the covering in Table 1), each of the congruences k ≡ a (mod m) from Table 1
must be replaced with Fk ≡ a (mod m) and subsequently solved for k. We denote these
solutions as A(a,m) = {k : Fk ≡ a (mod m)}. Observe the fact that the Fibonacci numbers
(or more generally any linear homogeneous recurrence relation with rational coefficients) are
eventually periodic modulo m with period say p(m) (cf. [1]). Note that a sequence considered
modulo m may have a non-repeating part at the beginning of the sequence, but this is not the
case in the Fibonacci sequence. Hence, if k ∈ A(a,m), then every integer in the congruence k

(mod p(m)) is also in A(a,m). These are computed below:

A(1, 3) = {1, 2, 7} (mod 8)
A(1, 7) = {1, 2, 6, 15} (mod 16)
A(3, 5) = {4, 6, 7, 13} (mod 20)
A(2, 13) = {3, 25} (mod 28)
A(4, 73) = {53, 95} (mod 148)
A(18, 37) = {10, 15, 28, 61} (mod 76)
A(13, 19) = {7, 11} (mod 18).

(1.1)

When we implement the Chinese Remainder Theorem, we find that the intersection of the
sets in (1.1) contains the following residue classes:

k ≡ 947887, 1735247, 1807873, or 2595233 (mod 3543120).

Since these residue classes for k do not include any multiples of 3, all such Fk are odd. We
deduce Fk is both a Riesel number and a Fibonacci number. Thus, there are infinitely many
Riesel numbers in the Fibonacci sequence.

The sequence of Lucas numbers Lk follows the same recurrence relation as the Fibonacci
numbers (Li = Li−1+Li−2), but with different initial values (L0 = 2 and L1 = 1). In Sections 2
and 3, we show that Luca and Mej́ıa-Huguet’s results for Riesel and Sierpiński numbers,
respectively, hold for the sequence of Lucas numbers. In addition, Luca and Stǎnicǎ [6] showed
there are infinitely many Fibonacci numbers that are not the sum of two prime powers. In
the final section of this paper, we show there are also infinitely many Lucas numbers with this
property.

2. Lucas-Riesel Numbers

We define the sequence of Lucas numbers in the usual way: L0 = 2, L1 = 1, and Li =
Li−1 + Li−2 for i ≥ 2. Consider the implications in Table 2.
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n ≡ 1 (mod 2) & Lk ≡ 2 (mod 3) =⇒ Lk · 2n − 1 ≡ 0 (mod 3)
n ≡ 2 (mod 4) & Lk ≡ 4 (mod 5) =⇒ Lk · 2n − 1 ≡ 0 (mod 5)
n ≡ 4 (mod 8) & Lk ≡ 16 (mod 17) =⇒ Lk · 2n − 1 ≡ 0 (mod 17)
n ≡ 8 (mod 16) & Lk ≡ 256 (mod 257) =⇒ Lk · 2n − 1 ≡ 0 (mod 257)
n ≡ 32 (mod 48) & Lk ≡ 3 (mod 13) =⇒ Lk · 2n − 1 ≡ 0 (mod 13)
n ≡ 28 (mod 36) & Lk ≡ 34 (mod 37) =⇒ Lk · 2n − 1 ≡ 0 (mod 37)
n ≡ 16 (mod 36) & Lk ≡ 4 (mod 73) =⇒ Lk · 2n − 1 ≡ 0 (mod 73)
n ≡ 112 (mod 288) & Lk ≡ 365 (mod 1153) =⇒ Lk · 2n − 1 ≡ 0 (mod 1153)
n ≡ 256 (mod 288) & Lk ≡ 2167 (mod 6337) =⇒ Lk · 2n − 1 ≡ 0 (mod 6337)
n ≡ 0 (mod 3) & Lk ≡ 1 (mod 7) =⇒ Lk · 2n − 1 ≡ 0 (mod 7)

Table 2

As before, the congruences for n in Table 2 form a covering. The implications also produce
a fixed residue class of integers Lk that are Riesel numbers whenever Lk is odd. Our aim is
to show this set of implications holds for all k in some arithmetic progression. We can then
deduce the existence of infinitely many Lucas numbers which are also Riesel numbers.

We begin by noting that the only Lucas numbers which are even are those satisfying k ≡ 0
(mod 3). In order to have Lk be a Riesel number (using this covering), we would need to
solve Lk ≡ a (mod m) for k in each row of the Table 2. We denote this set of solutions as
B(a,m) = {k : Lk ≡ a (mod m)}. These sets are computed in (2.1).

We use that the Lucas numbers are periodic modulo m. In fact, the period of the Lucas
numbers modulo m divides the period of the Fibonacci numbers modulo m [9]. Thus, the
modulus that appears in each B(a,m)-set in (2.1) is actually the period of the Fibonacci
numbers modulo m.

B(2, 3) = {0, 5, 7} (mod 8)
B(4, 5) = {3} (mod 4)

B(16, 17) = {12, 19, 24, 35} (mod 36)
B(256, 257) = {172, 259, 344, 515} (mod 516)

B(3, 13) = {2, 7, 26} (mod 28)
B(34, 37) = {36, 40, 51, 63} (mod 76)
B(4, 73) = {3, 71} (mod 148)

B(365, 1153) = {499, 655} (mod 2308)
B(2167, 6337) = {115, 5748, 6223, 6928} (mod 12676)

B(1, 7) = {1, 7} (mod 16)

(2.1)

Now it can be checked that if k modulo 55716312432816 is congruent to one of the following
16 integers:

17304307932583, 19044893268919, 20236745429047, 21977330765383,
23580842262103, 25321427598439, 26513279758567, 28253865094903,
38386155880135, 40126741216471, 41318593376599, 43059178712935,
44662690209655, 46403275545991, 47595127706119, 49335713042455,

then k lies in the intersection of the B(a,m) sets. Finally, since none of these congruences
for k includes any multiples of 3, all such Lk are odd. Thus, Lk is both a Riesel number and
a Lucas number. Hence, there are infinitely many Riesel numbers in the sequence of Lucas
numbers.

336 VOLUME 49, NUMBER 4
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3. Lucas-Sierpiński Numbers

In this section, we show how the covering from Table 2 in Section 2 can be utilized to find
infinitely many k such that Lk is a Sierpiński number. Consider the implications in Table 3.

n ≡ 1 (mod 2) & Lk ≡ 1 (mod 3) =⇒ Lk · 2n + 1 ≡ 0 (mod 3)
n ≡ 2 (mod 4) & Lk ≡ 1 (mod 5) =⇒ Lk · 2n + 1 ≡ 0 (mod 5)
n ≡ 4 (mod 8) & Lk ≡ 1 (mod 17) =⇒ Lk · 2n + 1 ≡ 0 (mod 17)
n ≡ 8 (mod 16) & Lk ≡ 1 (mod 257) =⇒ Lk · 2n + 1 ≡ 0 (mod 257)
n ≡ 32 (mod 48) & Lk ≡ −3 (mod 13) =⇒ Lk · 2n + 1 ≡ 0 (mod 13)
n ≡ 28 (mod 36) & Lk ≡ 3 (mod 37) =⇒ Lk · 2n + 1 ≡ 0 (mod 37)
n ≡ 16 (mod 36) & Lk ≡ −4 (mod 73) =⇒ Lk · 2n + 1 ≡ 0 (mod 73)
n ≡ 112 (mod 288) & Lk ≡ −365 (mod 1153) =⇒ Lk · 2n + 1 ≡ 0 (mod 1153)
n ≡ 256 (mod 288) & Lk ≡ −2167 (mod 6337) =⇒ Lk · 2n + 1 ≡ 0 (mod 6337)
n ≡ 0 (mod 3) & Lk ≡ −1 (mod 7) =⇒ Lk · 2n + 1 ≡ 0 (mod 7)

Table 3

The congruences for n in the table form a covering; these are the same congruences as in
Table 2. These implications show that if Lk satisfied all of these congruences simultaneously,
then Lk is a Sierpiński number, as long as Lk is odd.

To show there exist infinitely many integers k satisfying all of the implications in Table 2,
we begin by recalling that the only Lucas numbers which are even are those satisfying k ≡ 0
(mod 3). As before, the sets B(a,m) are computed in the table below:

B(1, 3) = {0, 5, 7} (mod 8)
B(1, 5) = {3} (mod 4)

B(1, 17) = {12, 19, 24, 35} (mod 36)
B(1, 257) = {172, 259, 344, 515} (mod 516)
B(−3, 13) = {2, 7, 26} (mod 28)
B(3, 37) = {36, 40, 51, 63} (mod 76)

B(−4, 73) = {3, 71} (mod 148)
B(−365, 1153) = {499, 655} (mod 2308)

B(−2167, 6337) = {115, 5748, 6223, 6928} (mod 12676)
B(−1, 7) = {1, 7} (mod 16).

(3.1)

Now it can be checked that k lies in the intersection of the B(a,m) sets if k (mod 55716312432816)
is in one of the following 32 residue classes:

3563460609625, 5304045945961, 6380599390361, 6495898106089,
8121184726697, 8236483442425, 9313036886825, 9839994939145,
11053622223161, 11580580275481, 12657133719881, 12772432435609,
14397719056217, 14513017771945, 15589571216345, 17330156552681,
27462447337913, 29203032674249, 30394884834377, 32135470170713,
33738981667433, 35479567003769, 36671419163897, 38197925094889,
38412004500233, 39938510431225, 41130362591353, 42870947927689,
44474459424409, 46215044760745, 47406896920873, 49147482257209.
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Again, these congruences for k do not include any k ≡ 0 (mod 3), so all such Lk are odd.
Hence, we deduce Lk is both a Sierpiński number and a Lucas number. Thus, there are
infinitely many Sierpiński numbers in the sequence of Lucas numbers.

4. Lucas Numbers That are Not a Sum of Two Prime Powers

Luca and Stǎnicǎ [6] showed there exist infinitely many Fibonacci numbers that are not
a sum of two prime powers. That is, they are not of the form pa + qb with primes p and q

and non-negative integers a and b. In this section, we prove an analogous result for the Lucas
numbers. In particular, we prove the following theorem.

Theorem 4.1. There are infinitely many Lucas numbers Ln that cannot be represented as

pa + qb for some primes p and q and nonnegative integers a and b.

To prove the theorem, we begin by observing the congruences shown in Table 4. Again, we
note that the congruences involving n form a covering of the integers.

n ≡ 1 (mod 2) & Lk ≡ 21 (mod 3)
n ≡ 2 (mod 4) & Lk ≡ 22 (mod 5)
n ≡ 4 (mod 8) & Lk ≡ 24 (mod 17)
n ≡ 8 (mod 16) & Lk ≡ 28 (mod 257)
n ≡ 16 (mod 32) & Lk ≡ 216 (mod 65537)
n ≡ 32 (mod 64) & Lk ≡ 232 (mod 641)
n ≡ 0 (mod 64) & Lk ≡ 20 (mod 6700417)

Table 4

The solutions for k in each of the congruences involving Lk in Table 4 are, respectively,

B(2, 3) = {0, 5, 7} (mod 8)
B(22, 5) = {3} (mod 4)
B(24, 17) = {12, 19, 24, 35} (mod 36)

B(28, 257) = {172, 259, 344, 515} (mod 516)
B(216, 65537) = {7283, 14563} (mod 14564)

B(232, 641) = {1, 319} (mod 640)
B(1, 6700417) = {6700419, 13400835} (mod 13400836).

(4.1)

Observe that the intersection of the sets above is nonempty; in fact, every integer congruent
modulo 3021228124801920 to one of the following 4 integers:

799976513568959, 878044423770559, 2550328108096319, 2628396018297919

is in the intersection of the B-sets listed in (4.1).
Note all such k are not divisible by 3, so Lk is odd. To complete the proof, suppose now that

such a Lucas number Lk can be expressed as a sum of two prime powers: Lk = pa+ qb. As Lk

is odd, we must have Lk = 2a + qb. Since the congruences for n in Table 4 form a covering of
the integers, a must fit into a residue class expressed in one of the rows of the table. Suppose
we have a ≡ ai (mod bi), where n ≡ ai (mod bi) and Lk ≡ 2ai (mod pi) is a row in Table 4.

Observe 2bi ≡ 1 (mod pi). We deduce that Lk ≡ 2a (mod pi). In particular, pi | (Lk − 2a).
However, Lk − 2a = qb, so that q = pi. Thus, q ∈ {3, 5, 17, 257, 65537, 641, 6700417}. Recall
Lucas numbers can be expressed as Lk = αk + βk, where α = 1

2
(1 +

√
5) and β = 1

2
(1−

√
5).

The equation αk + βk = 2a + qb can be rewritten as an S-unit equation known to have only
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finitely many solutions (k, a, b) (cf. [2, 3, 5]). Thus, if we take k sufficiently large, there are
no solutions to Lk = 2a + qb for q ∈ {3, 5, 17, 257, 65537, 641, 6700417}. We deduce if k is
sufficiently large and in the intersection of the B-sets, then Lk is a Lucas number that is not
a sum of two prime powers.
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[5] F. Luca and P. Stǎnicǎ, Fibonacci numbers of the form pa ± pb, Proceedings of the Eleventh International

Conference on Fibonacci Numbers and their Applications, Congr. Numer., 194 (2009), 177–183.
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