
ON THE CYCLE STRUCTURE OF REPEATED EXPONENTIATION

MODULO A PRIME POWER
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Abstract. We obtain some results about the repeated exponentiation modulo a prime power
from the viewpoint of arithmetic dynamical systems. In particular, we extend two asymptotic
formulas about periodic points and tails in the case of modulo a prime to the case of modulo
a prime power.

1. Introduction

For a positive integer M , denote by Z/MZ the residue ring of Z modulo M and (Z/MZ)∗

the unit group. For an integer k ≥ 2, we consider the following endomorphism of (Z/MZ)∗,

f : (Z/MZ)∗ → (Z/MZ)∗, x→ xk.

For any initial value x ∈ (Z/MZ)∗, we repeat the action of f , then we get a sequence

x0 = x, xn = xkn−1, n = 1, 2, 3, . . . .

This sequence is known as the power generator of pseudorandom numbers. Studying such
sequences in the cases that M is a prime or a product of two distinct primes, is of independent
interest and is also important for several cryptographic applications, see [1, 6]. From the
viewpoint of cryptography, there are numerous results about these sequences, see the papers
mentioned in [2], more recently see [3] and its references.

If we view (Z/MZ)∗ as a vertex set and draw a directed edge from a to b if f(a) = b, then we
get a digraph. There are also many results in this direction, see [12] and the papers mentioned
there, more recently see [8, 9, 10, 11].

As in [2], in this article we will study (Z/MZ)∗ under the action of f from the viewpoint
of arithmetic dynamical systems, where M is a prime power. Specifically we will extend two
asymptotic formulas in [2] to the case of modulo a prime power.

It is easy to see that for any initial value x ∈ (Z/MZ)∗ the corresponding sequence becomes
eventually periodic, that is, for some positive integer sk,M(x) and tail tk,M(x) < sk,M(x), the
elements x0 = x, x1, . . ., xsk,M (x)−1 are pairwise distinct and xsk,M (x) = xtk,M (x). So we can

define a tail function tk,M on (Z/MZ)∗.
The sequence xtk,M (x), . . . , xsk,M (x)−1, ordered up to a cyclic shift, is called a cycle. The cycle

length is ck,M(x) = sk,M(x) − tk,M(x). The elements in the cycle are called periodic points

and their periods are ck,M (x). So we can define a cycle length function ck,M on (Z/MZ)∗. In
particular, [4, 5] gave lower bounds for the largest period.

We denote by Pr(k,M) and P (k,M), respectively the number of periodic points with period
r and the number of periodic points in (Z/MZ)∗. Also, we denote by Cr(k,M) and C(k,M),
respectively the number of cycles with length r and the number of cycles in (Z/MZ)∗. We
denote the average values of ck,M(x) and tk,M(x) over all x ∈ (Z/MZ)∗ by c(k,M) and t(k,M),
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respectively,

c(k,M) =
1

ϕ(M)

∑

x∈(Z/MZ)∗

ck,M(x), t(k,M) =
1

ϕ(M)

∑

x∈(Z/MZ)∗

tk,M(x),

where ϕ is the Euler totient function.
When M is an odd prime power, we will derive explicit formulas for Pr(k,M) and Cr(k,M)

by the results in [10], and we will also derive explicit formulas for c(k,M) and t(k,M) which
generalize those in [11].

For two integers r,m ≥ 1, we call

lim
X→∞

1

π(X)

∑

p≤X

Pr(k, p
m)

the asymptotic mean number of periodic points with period r in (Z/pmZ)∗ for different choices
of prime p, and we denote it by APr(k,m). Similarly, we can define the asymptotic mean
number for cycles with length r and denote it by ACr(k,m). We will derive explicit formulas
for APr(k,m) and ACr(k,m).

For an integer m ≥ 1, following [11], we study the average values of P (k, pm) and t(k, pm)
over all primes p ≤ N ,

S0(k,m,N) =
1

π(N)

∑

p≤N

P (k, pm), S(k,m,N) =
1

π(N)

∑

p≤N

t(k, pm).

where, as usual, π(N) is the number of primes p ≤ N . Following the method in [2], we will
get asymptotic formulas for S0(k,m,N) and S(k,m,N).

2. Preparations

For two integers l and n, we denote their greatest common divisor by gcd(l, n). For a
positive integer n, we denote by τ(n) the number of its positive divisors. Theorem 4.9 in [7]
tells us that

lim
X→∞

1

π(X)

∑

p≤X

gcd(p − 1, n) = τ(n). (2.1)

For two integers m ≥ 1 and n ≥ 2, we denote the largest prime divisor of n by q. Then we
have

lim
X→∞

1

π(X)

∑

p≤X

gcd(pm−1(p− 1), n)

= lim
X→∞

1

π(X)

∑

q<p≤X

gcd(pm−1(p− 1), n) (2.2)

= lim
X→∞

1

π(X)

∑

q<p≤X

gcd(p − 1, n)

= τ(n).

Notice that if p is an odd prime, gcd(pm − pm−1, n) is the number of solutions of the equation
xn = 1 in (Z/pmZ)∗.
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Given two integers a and n with gcd(a, n) = 1, following the method in the proof of formula
(2) in [2], we can get

∑

p≤X
p≡a (mod n)

pm =
Xm+1

(m+ 1)ϕ(n)lnX
+O(Xm+1ln−2X). (2.3)

Then we have

∑

p≤X
p≡a (mod n)

pm−1(p − 1) =
Xm+1

(m+ 1)ϕ(n)lnX
+O(Xm+1ln−2X). (2.4)

Following the same method in the proof of formula (4) in [2], we have

∑

p≤X
p≡a (mod n)

pm−1(p − 1) = O

(

Xm+1

n
+Xm

)

. (2.5)

3. Main Results

For two integers d and n satisfying gcd(d, n) = 1, we denote the multiplicative order of n
modulo d by orddn. For an integer n and a prime p, we denote vp(n) the exact power of p
dividing n.

Let µ be the Möbius function. For a real number a, we denote dae the least integer which
is not less than a.

Write k = pn1

1 p
n2

2 · · · pns
s ≥ 2, where p1, . . . , ps are distinct primes, p1 < p2 < · · · < ps and

n1, . . . , ns ≥ 1. Let m be a fixed positive integer.

Proposition 3.1. Let p be an odd prime and r be a positive integer. Write pm − pm−1 =
pr11 · · · prss · ρ, where r1, . . . , rs ≥ 0 are integers and

gcd(p1 . . . ps, ρ) = 1. We have

(1) Cr(k, p
m) = 1

r

∑

d|r µ(d) gcd(p
m − pm−1, kr/d − 1).

(2) Pr(k, p
m) =

∑

d|r µ(d) gcd(p
m − pm−1, kr/d − 1).

(3) P (k, pm) = ρ.

(4) C(k, pm) =
∑

d|ρ
ϕ(d)
orddk

.

(5) For any x ∈ (Z/pmZ)∗, denote ordpmx by ordx, ck,pm(x) = ordgcd(ordx,ρ)k.

(6) c(k, pm) = 1
ρ

∑

d|ρ ϕ(d)orddk.

(7) For any x ∈ (Z/pmZ)∗, denote ordpmx by ordx,

tk,pm(x) = max

{⌈

vp1(ordx)

n1

⌉

,

⌈

vp2(ordx)

n2

⌉

, . . . ,

⌈

vps(ordx)

ns

⌉}

.

(8) t(k, pm) = 1
p
r1
1

···prss

∑

d|p
r1
1

···prss
ϕ(d)max

{⌈

vp1 (d)
n1

⌉

, . . . ,
⌈

vps (d)
ns

⌉}

.

Proof. (1) and (2) By Möbius inversion formula and Theorem 5.6 in [10].
(3) A special case of Corollary 3 in [12].
(4) By Theorem 2 and Theorem 3 in [12].
(5) By Lemma 3 and Theorem 2 in [12].
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(6) Denote pr11 · · · prss by w, from (5), we have

c(k, pm) =
1

pm − pm−1

∑

x∈(Z/pmZ)∗

ck,pm(x)

=
1

pm − pm−1

∑

d|ρ

∑

n|w

ϕ(dn)orddk

=
1

pm − pm−1

∑

n|w

ϕ(n)
∑

d|ρ

ϕ(d)orddk =
1

ρ

∑

d|ρ

ϕ(d)orddk.

(7) Let wx be the factor of ordx such that ordx
wx

is the largest factor relatively prime to k.

By Lemma 3 in [12], we have tk,pm(x) is the least non-negative integer l such that wx|kl. In
other words, tk,pm(x) is the least non-negative integer l such that vpi(ord x) ≤ lni, for any
1 ≤ i ≤ s. Then we get the desired result.

(8) Notice that for any x ∈ (Z/pmZ)∗, ordx|(pm − pm−1), and there are ϕ(ordx) elements
with the order ordx. By (7), we have

t(k, pm) =
1

pm − pm−1

∑

d|(pm−pm−1)

ϕ(d)max

{⌈

vp1(d)

n1

⌉

,

⌈

vp2(d)

n2

⌉

, . . . ,

⌈

vps(d)

ns

⌉}

.

Furthermore, we have

t(k, pm) =
1

pm − pm−1

∑

d|p
r1
1

...prss ρ

ϕ(d)max

{⌈

vp1(d)

n1

⌉

, . . . ,

⌈

vps(d)

ns

⌉}

=
1

pm − pm−1

r1
∑

i1=0

· · ·
rs
∑

is=0

∑

d|ρ

ϕ(pi11 · · · piss d)max

{⌈

i1
n1

⌉

, . . . ,

⌈

is
ns

⌉}

=
1

pm − pm−1

∑

d|ρ

ϕ(d)

r1
∑

i1=0

. . .

rs
∑

is=0

ϕ(pi11 · · · piss )max

{⌈

i1
n1

⌉

, . . . ,

⌈

is
ns

⌉}

=
1

pr11 · · · prss
∑

d|p
r1
1

···prss

ϕ(d)max

{⌈

vp1(d)

n1

⌉

, . . . ,

⌈

vps(d)

ns

⌉}

.

�

Remark 3.2. If we put k = 2 and m = 1, then the formulas (3), (4), (6), and (8) correspond
to Theorem 6 in [11].

Remark 3.3. Since the conclusions in [10] and [12] are about the general case of modulo a
positive integer, it is easy to get similar formulas for the case of p = 2.

Proposition 3.4. Let r be a positive integer, we have

APr(k,m) =
∑

d|r

µ(d)τ(kr/d − 1), (3.1)

ACr(k,m) =
1

r

∑

d|r

µ(d)τ(kr/d − 1). (3.2)

Proof. Combining (2.2) and Proposition 3.1 (1) and (2), we can get the desired formulas. �

NOVEMBER 2011 343



THE FIBONACCI QUARTERLY

In the following, we denote by Ω the set of positive S-units with S = {p1, . . . , ps}. Here a
positive S-unit means a positive integer whose prime divisors all belong to S.
Proposition 3.5. We have

lim
N→∞

S0(k,m,N)

Nm
=

1

m+ 1

(

s
∏

i=1

p2i
p2i − 1

− 1

)

.

Proof. Let Q = p1p2 . . . ps and denote by UQ the set of integers u, 1 ≤ u ≤ Q, and gcd(u,Q) =
1.

For each odd prime p, let ρp be the largest divisor of pm − pm−1 coprime to p1p2 . . . ps. It
is easy to see

lim
N→∞

S0(k,m,N)

Nm
= lim

N→∞

1

Nmπ(N)

∑

ps<p≤N

ρp.

Notice that if a prime p > ps, then vpi(p
m − pm−1) = vpi(p − 1) for any 1 ≤ i ≤ s. Hence,

following the method in Theorem 2 of [2], we have

lim
N→∞

S0(k,m,N)

Nm
= lim

N→∞

1

Nmπ(N)

∑

q∈Ω

q−1
∑

u∈UQ

∑

p≤N
p≡qu+1 (mod qQ)

(pm − pm−1).

Following the method in Theorem 2 of [2], we have

lim
N→∞

S0(k,m,N)

Nm
=

1

m+ 1

∑

q∈Ω

1

q2
.

Moreover, we have

∑

q∈Ω

1

q2
=

∞
∑

i1,...,is=0

1

(pi11 · · · piss )2
− 1

=

∞
∑

i1=0

1

p2i11

· · ·
∞
∑

is=0

1

p2iss

− 1

=

s
∏

i=1

p2i
p2i − 1

− 1.

Hence, we get the desired result. �

Corollary 3.6. We have

1

k2(m+ 1)
< lim

N→∞

S0(k,m,N)

Nm
<

2s − 1

m+ 1
.

Proof. Notice that for any prime p, we have

1 + p−2 <
p2

p2 − 1
= 1 +

1

p2 − 1
< 2.

�

Given q = pr11 · · · prss ∈ Ω, we denote

ψ(q) =
1

q

∑

d|q

ϕ(d)max

{⌈

vp1(d)

n1

⌉

, . . . ,

⌈

vps(d)

ns

⌉}

.
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Proposition 3.7. We have

lim
N→∞

S(k,m,N) =
∑

q∈Ω

ψ(q)

q
.

Proof. Given q = pr11 · · · prss ∈ Ω. Suppose r1 ≥ 1. We want to estimate 1
q

∑

d|q ϕ(d)
⌈

vp1 (d)
n1

⌉

.

For simplicity, we replace p1, r1, and n1 by p, r, and n, respectively. By the division algorithm,
we write r = ln+ d with 0 ≤ d < n. We have

1

q

∑

d|q

ϕ(d)

⌈

vp(d)

n

⌉

=
1

pr

∑

d|pr

ϕ(d)

⌈

vp(d)

n

⌉

=
p− 1

pr

r
∑

i=1

pi−1

⌈

i

n

⌉

=
p− 1

pr





n
∑

i=1

pi−1 +

2n
∑

i=n+1

2pi−1 + · · ·+
ln
∑

i=(l−1)n+1

lpi−1 +

ln+d
∑

i=ln+1

(l + 1)pi−1





=
pn − 1

pr

[

1 + 2pn + · · · + lp(l−1)n
]

+
(l + 1)pln(pd − 1)

pr

=
lpln

pr
− pln − 1

pr(pn − 1)
+

(l + 1)pln(pd − 1)

pr

≤ l + (l + 1) ≤ 3r.

Hence, we have

ψ(q) ≤ 1

q

∑

d|q

ϕ(d)

(⌈

vp1(d)

n1

⌉

+ · · ·+
⌈

vps(d)

ns

⌉)

≤ 3(r1 + · · ·+ rs) (3.3)

≤ 3

ln 2
ln q = O(lnq).

Similarly to Proposition 3.5, by Proposition 3.1 (8), we have

lim
N→∞

S(k,m,N) = lim
N→∞

1

π(N)

∑

q∈Ω

ψ(q)
∑

u∈UQ

∑

p≤N
p≡qu+1 (mod qQ)

1.

Then following the method in Theorem 2 of [2], we can get the desired result. �

Corollary 3.8. We have

1

k
< lim

N→∞
S(k,m,N) <

5
√
p1 · · ·

√
ps

(
√
p1 − 1) · · · (√ps − 1)

.
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Proof. On one hand we have

∑

q∈Ω

ψ(q)

q
>

∑

i1≥n1,··· ,is≥ns

ϕ(pi11 · · · piss )
(pi11 · · · piss )2

=
(p1 − 1) · · · (ps − 1)

p1 · · · ps

∞
∑

i1≥n1

1

pi11
· · ·

∞
∑

is≥ns

1

piss

=
1

k
.

On the other hand, by (3.3) we have ψ(q) < 5 ln q, then we have

∑

q∈Ω

ψ(q)

q
<
∑

q∈Ω

5 ln q

q

< 5
∑

q∈Ω

1√
q

= 5
∑

i1=0,··· ,is=0

1
√

pi11 · · · piss

=
5
√
p1 · · ·

√
ps

(
√
p1 − 1) · · · (√ps − 1)

.

�

4. Remarks on the General Case

In this section, we will give some remarks on the case of modulo a positive integer.
We can deduce formulas for Cr(k,M) and Pr(k,M) directly from Theorem 5.6 in [10].

Corollary 3 in [12] has given a formula for P (k,M). We can also derive a formula for C(K,M)
directly by applying Theorem 2 and Theorem 3 in [12].

Following the same methods, we can easily determine the cycle length function ck,M (x) and
the tail function tk,M(x) on (Z/MZ)∗, then we can get formulas for c(k,M) and t(k,M).

In fact, [12] and [10] can tell us more information about the properties of repeated expo-
nentiation modulo a positive integer.
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