ON THE CYCLE STRUCTURE OF REPEATED EXPONENTIATION
MODULO A PRIME POWER

MIN SHA

ABSTRACT. We obtain some results about the repeated exponentiation modulo a prime power
from the viewpoint of arithmetic dynamical systems. In particular, we extend two asymptotic
formulas about periodic points and tails in the case of modulo a prime to the case of modulo
a prime power.

1. INTRODUCTION

For a positive integer M, denote by Z/MZ the residue ring of Z modulo M and (Z/MZ)*
the unit group. For an integer k > 2, we consider the following endomorphism of (Z/MZ)*,

f:(Z/MZ)* — (Z/MZ)*, x — zF.
For any initial value z € (Z/MZ)*, we repeat the action of f, then we get a sequence
To =T, Tnp ::Efl_l, n=123,....

This sequence is known as the power generator of pseudorandom numbers. Studying such
sequences in the cases that M is a prime or a product of two distinct primes, is of independent
interest and is also important for several cryptographic applications, see [1, 6]. From the
viewpoint of cryptography, there are numerous results about these sequences, see the papers
mentioned in [2], more recently see [3] and its references.

If we view (Z/MZ)* as a vertex set and draw a directed edge from a to b if f(a) = b, then we
get a digraph. There are also many results in this direction, see [12] and the papers mentioned
there, more recently see [8, 9, 10, 11].

As in [2], in this article we will study (Z/MZ)* under the action of f from the viewpoint
of arithmetic dynamical systems, where M is a prime power. Specifically we will extend two
asymptotic formulas in [2] to the case of modulo a prime power.

It is easy to see that for any initial value « € (Z/MZ)* the corresponding sequence becomes
eventually periodic, that is, for some positive integer sy ps(z) and tail ty pr(x) < spa(x), the
So we can

elements zo = x, x1, ..., Ty, ,,(2)—1 are pairwise distinct and z,, \ () = Ty, 4/ (2)-
define a tail function ty pr on (Z/MZ)*.
The sequence zy, , (2 Ts; 1, (x)—1, ordered up to a cyclic shift, is called a cycle. The cycle

length is ci pr(x) = spa(x) — tgar(x). The elements in the cycle are called periodic points
and their periods are ci pr(z). So we can define a cycle length function ¢ p on (Z/MZ)*. In
particular, [4, 5] gave lower bounds for the largest period.

We denote by P,(k, M) and P(k, M), respectively the number of periodic points with period
r and the number of periodic points in (Z/MZ)*. Also, we denote by C,.(k, M) and C(k, M),
respectively the number of cycles with length r and the number of cycles in (Z/MZ)*. We
denote the average values of cx y(z) and ty ps(x) over all x € (Z/MZ)* by ¢(k, M) and t(k, M),

340 VOLUME 49, NUMBER 4



ON THE CYCLE STRUCTURE OF EXPONENTIATION MODULO A PRIME POWER

respectively,

1 1
C(k, M) = W Z Ck7M(.Z'), t(k, M) = m Z tk’M(x),
z€(Z/MZ)* z€(Z/MZ)*

where ¢ is the Euler totient function.

When M is an odd prime power, we will derive explicit formulas for P,(k, M) and C,.(k, M)
by the results in [10], and we will also derive explicit formulas for ¢(k, M) and t(k, M) which
generalize those in [11].

For two integers r,m > 1, we call

Xlgnooﬂ' Zpkp

the asymptotic mean number of periodic points with period r in (Z/p™Z)* for different choices
of prime p, and we denote it by AP.(k,m). Similarly, we can define the asymptotic mean
number for cycles with length r and denote it by AC,.(k, m). We will derive explicit formulas
for AP,(k,m) and AC,(k,m).

For an integer m > 1, following [11], we study the average values of P(k,p™) and t(k,p™)
over all primes p < N,

So(k,m,N) =

S ik, ™).

p<N

1

k,m,N) =
p<N
where, as usual, m(N) is the number of primes p < N. Following the method in [2], we will
get asymptotic formulas for Sy(k, m,N) and S(k,m,N).

2. PREPARATIONS

For two integers [ and n, we denote their greatest common divisor by ged(l,n). For a
positive integer n, we denote by 7(n) the number of its positive divisors. Theorem 4.9 in [7]
tells us that

Z ged(p =7(n). (2.1)

X—)ooﬂ'

For two integers m > 1 and n > 2, we denote the largest prime divisor of n by g. Then we
have

lim —— chd m=(p—1),n)

X—>007T
: 1 m—1
= Jm -5 > ged(p™H(p - 1),n) (2:2)
q<p<X
g e 5 o

q<p<X
= 7(n).

Notice that if p is an odd prime, ged(p™ — p™ 1

2" =11in (Z/p™Z)*.

n) is the number of solutions of the equation

NOVEMBER 2011 341



THE FIBONACCI QUARTERLY

Given two integers a and n with ged(a,n) = 1, following the method in the proof of formula
(2) in [2], we can get

m Xm+1 m+1y. —2
;{ P T X +O(X™  n2X). (2.3)
p=a (mod n)
Then we have
Xm—l—l
oo oM p-1)= RSP + O(X™ n—2X). (2.4)
pzapén)gd n)

Following the same method in the proof of formula (4) in [2], we have

o pmp-1)=0 (Xm+1 - X’”) : (2.5)

n
p<X
p=a (mod n)

3. MAIN RESULTS

For two integers d and n satisfying ged(d,n) = 1, we denote the multiplicative order of n
modulo d by ordgn. For an integer n and a prime p, we denote v,(n) the exact power of p
dividing n.

Let p be the Mébius function. For a real number a, we denote [a] the least integer which
is not less than a.

Write k = p'py? -+ pls > 2, where py,...,ps are distinct primes, p; < ps < --- < p, and
ni,...,ns > 1. Let m be a fixed positive integer.

Proposition 3.1. Let p be an odd prime and r be a positive integer. Write p™ — p™~! =
Pt - p, where r1,...,rs > 0 are integers and
gcd(p1 .ps,p) = 1. We have

(1) Crlk,p™) = 3 X g 1(d) ged(p™ — p= 1 k7T 1),
(2) Pr(k,p™) = 2, p(d) ged (p™ — p™ 1 B/ — 1),
(3) P(k,p™) = p.

(4) Clk,p™) = ¥, 20

(5) For any x 6 (Z/p™Z)*, denote ordymx by ordz, cypm(r) = ordged(orda,p) k-
(6)
(7)

6) c(k,p™) = ; Xg, P(d)ordgk.
7 For any 6 (Z/p™Z)*, denote ordyma by ordx,

b () = max{ { <°l‘dﬂ , { ““dxﬂ . {M] } .

o)

ni ng Tg
(8) t(k,p™) = m Zd\pil...pgs ©(d) max { P”}@—Yd)w e, {”P;L—S‘ﬂ }

Proof. (1) and (2) By Mé&bius inversion formula and Theorem 5.6 in [10].
(3) A special case of Corollary 3 in [12].

(4) By Theorem 2 and Theorem 3 in [12].

(5) By Lemma 3 and Theorem 2 in [12].
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(6) Denote pi*---p%s by w, from (5), we have

m 1
C(k,p ) = W Z Ck pm (IIZ’)

P x€(Z/p™L)*
= p——— 1ZZ¢dn0rddk
dlp n|lw
= Tm pm— m _ om—1 Z 90 Z 90 Orddk = Z (,0 orddk
P nw o dp Pan

(7) Let w, be the factor of ordz such that % is the largest factor relatively prime to k.

By Lemma 3 in [12], we have tj ,m(z) is the least non-negative integer [ such that w,|k'. In
other words, i ,m () is the least non-negative integer ! such that v, (ord ) < In;, for any
1 <17 <'s. Then we get the desired result.

(8) Notice that for any = € (Z/p™Z)*, ordx|(p™ — p™~1), and there are p(ordr) elements

with the order ordx. By (7), we have
Ups (d)
’ Ns .
Furthermore, we have

W) =y Y playmax{ [ [
t(k,p™) = pm—;pm—l ZT ¢(d) max { {%;—(flw s P”;(de}

d|(pm—pm—1)
dlpyt..psp

e S et zSdmaX{[;_j,

11=0 is=0 d|p

g e 2t { 1] [

dlp i1=0 1s=0
Up, (d)
) Ns .

1 v (d)-‘

= 7 d)max { | 2=,

G 2 eldma |
d|p1 ps®

Remark 3.2. If we put £ = 2 and m = 1, then the formulas (3), (4), (6), and (8) correspond

to Theorem 6 in [11].

Remark 3.3. Since the conclusions in [10] and [12] are about the general case of modulo a
positive integer, it is easy to get similar formulas for the case of p = 2.

Proposition 3.4. Let r be a positive integer, we have

=> p(d)r (k- 1), (3.1)

d|r

Zu (k- 1). (3.2)

Proof. Combining (2.2) and Proposition 3.1 (1) and (2), we can get the desired formulas. O

NOVEMBER 2011 343



THE FIBONACCI QUARTERLY

In the following, we denote by  the set of positive S-units with S = {p1,...,ps}. Here a
positive S-unit means a positive integer whose prime divisors all belong to S.

Proposition 3.5. We have

I So(k,m,N) 1 1

im —-1].

N—o0 N™ T m +1 2

Proof. Let QQ = pip2 . ..ps and denote by Ug the set of integers u,1 <u <@, and ged(u, Q) =
1.

m—1

For each odd prime p, let p, be the largest divisor of p™ — p coprime to pips...ps. It

is easy to see
SO(k7 m, N)

lim 205 ) iy
Nl—H>100 N™ N1—>oo Nmﬂ' Z Pp:
ps<p<N
Notice that if a prime p > ps, then vy, (p™ — p™ 1) = v,,(p — 1) for any 1 < i < s. Hence,
following the method in Theorem 2 of [ |, we have
_ So(k,m,N) -1 -1
1 ) m _ =),
R i S =re) SUAD DED DR
qEQ uelq p<N

p=qu+1 (mod Q)

Following the method in Theorem 2 of [2], we have

. So(k,m,N) 1 1
Z\}gnoo Nm _m—i-l%q '

Moreover, we have

(e}

SLoy o

qeq q i1,...1s=0 (plll o 'pés)z
o o
1 1
2-12::0 Pt ;::0 pi"
R o A
- o .
=1 Pi 1
Hence, we get the desired result. O
Corollary 3.6. We have
Ly Solkm Ny 201
—_— im .
k72(m—|—1) N—oo Nm™ m—+1
Proof. Notice that for any prime p, we have
2 p? 1
1 i< =14+—-=——<2.
+p p2 -1 + p2 -1
O
Given ¢ = pi'---pis € Q, we denote
d d
Z‘p max{{”m( )-‘ o [Ups( )-‘}
ni Ng
dlq
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Proposition 3.7. We have

v(a)
—

N—oo

lim S(k,m,N) Z
€n

Proof. Given g = pi* ---pi* € Q. Suppose r; > 1. We want to estimate %Zd‘q o(d) P’“—M)—‘

ni
For simplicity, we replace p1, r1, and n1 by p, r, and n, respectively. By the division algorithm,
we write r = In + d with 0 < d < n. We have

e[| = T [5]

dlq dlp"
p—1 Er:pi_l P -‘
pr i=1 n
p— 1 n ' 2n ' In ' In+d
) |: pz—1+ Z 2pz—1+.“_|_ Z lpz—1_|_ Z (l—|—1)p—
p =1 i=n+1 i=(—-1)n+1 i=Iln+1

—1 . L+ 1)p"(pt—1
_P . [1 +2p" 4 -+ Ipt l)n] I ( )ppr(p )
Ipin P —1 N I+ 1)pl”(pd _1)

Hence, we have

q dlg ni Ng
3(ry + -+ 7s) (3.3)
3
<2 1
< g g = O(lng)

Similarly to Proposition 3.5, by Proposition 3.1 (8), we have

lim S(k,m,N) = hm

N N Z¢ >, 2 L

qEQ uclq p<N
p=qu+1 (mod ¢Q)

Then following the method in Theorem 2 of [2], we can get the desired result. O

Corollary 3.8. We have

1 im m VL VP
A Sthm N < e U =)
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Proof. On one hand we have

Z Y(q) N Z @(Pif P?)
P >N, is >N (py' -+ p5)?
o0 o0

_ =1 (ps—1) 3 1. 3 1

i1
Pr--Ps > P1 i>n, Ps

1
=
On the other hand, by (3.3) we have ¥(q) < 5In g, then we have

NN

qeN qeN

1
-5 o
i1=0;i3:0m

_ 5/P1" " \/Ps
(Vor—1)- (yps — 1)’

4. REMARKS ON THE GENERAL CASE

In this section, we will give some remarks on the case of modulo a positive integer.

We can deduce formulas for C,.(k, M) and P,(k,M) directly from Theorem 5.6 in [10].
Corollary 3 in [12] has given a formula for P(k, M). We can also derive a formula for C (K, M)
directly by applying Theorem 2 and Theorem 3 in [12].

Following the same methods, we can easily determine the cycle length function ¢y p/(x) and
the tail function ¢ ps(x) on (Z/MZ)*, then we can get formulas for c(k, M) and t(k, M).

In fact, [12] and [10] can tell us more information about the properties of repeated expo-
nentiation modulo a positive integer.
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