A NAIVE PROOF THAT F;, =0 (mod 5)

MICHAEL D. HIRSCHHORN

ABSTRACT. We give a new and simple proof of the fact that
F5, =0 (mod 5)

and more.

1. INTRODUCTION

We give a new and simple proof of the fact that, modulo 5
F5, =0,
as well as the facts that
Fsni1 = Fspyo = F1 + 28, = Fpo + Fy,
Frnq3 = —Fopya = 2Fn41 — Fyy = Fpq1 + Fya.

2. PROOFS
We have
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It follows that, modulo 5,
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and Z F5,2" = 0.
n>0
It follows that, modulo 5,
F5, =0 (2.1)
and

F5n+1 = F5n+2 = Fn+1 +2F, = n+2 + Fn, (22)
F5n+3 = _F5n+4 = 2F’n—l—l - F, = n+1 + Fy1.

3. COMMENTS

In the past, I have proved that F5, = 0 (mod 5) by finding the generating function. The
method involves a fifth root of unity, 7.

Thus, we start by writing
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The idea is that the denominator is now a function of z°. For if we write D(z) for the
denominator, then

D(nz) = D(x).
If we write
D(z) = Z dpz"
n>0
it follows that
nndn = dp,
SO
d, =0

whenever 5 { n.
Indeed, using the facts that

=1 and 1+n+n" 47" +7" =0,
it is not too hard to show that the above equation becomes
x ozl + a4 227 + 32 + 52t — 325 + 22° — 2 +25)
l—2z—2a2 1— 1125 — 210
Of course, this can be checked by cross—multiplication. Indeed, it can be stated without
derivation, and then verified. In any case, we obtain
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THE FIBONACCI QUARTERLY

3+
2 ot = T

n>0
5%
d Fooogt=—M
and ) Foa 1— 11z — 22
n>0

In particular, it follows that
F5, =0 (mod 5).

The new proof presented in this paper is more naive, in that it does not require reference
to roots of unity.
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