SOME IDENTITIES FOR FOUR TERM RECURRENCE RELATIONS

NILS GAUTE VOLL

ABSTRACT. We generalize a result by Voll for three term recurrence relations to four term
recurrence relations and apply the result to a class of Tribonacci sequences, the four term
Lucas (Trucas) sequence and the Tribonacci polynomials.

1. INTRODUCTION

Three term recurrence relations is a well studied mathematical object and as a consequence
of this study several identities related to three term recurrence relations have been established.
Several such identities are given in [2] and a general class of such identities are also proven
in [6]. We will in the following give a class of identities for four term recurrence relations
with constant coefficients by a method similar to the one in [6] and apply our result to the
Tribonacci and related sequences.

2. FRAMEWORK

Our object of study will in this paper be the four term recurrence relations, defined by
Xp=0aX, 1+ BX, 2+ Y Xn—3 (21)

where «, # and 7 are (possibly complex) constants. A sequence {X;}?°_, is called a solution
of (2.1) if all its elements satisfies this equality for all n € N. As we know from [3], if {X,,}
is a solution of the recurrence (2.1), then {aX,} for complex a is also a solution of (2.1). In
addition, if {X,} and {Y,,} are solutions then so is also {X,, + Y, }. Furthermore, if {X;}° ,
is a solution of the recurrence, then so is {X;;}°_, since a, § and 7 are constants.

Let us now assume that {X,}, {Y,}, and {Z,} are all solutions of the recurrence in (2.1)

and then define Ag,{f) to be given by the determinant

Xm—i—k Ym-‘,—k Zm-‘,—k
AR — X, 1 Y1 Zma (2.2)
Xm—2 Ym—2 Zm—2

which is valid whenever k > —2 and m > 0. We now observe that

Xm—2 Ym—2 Zm—2
ACD =X 1 Y1 Zpmoa|=0 (2.3)
Xm—2 Ym—2 Zm—2
and that
Xm—l Ym—l Zm—l
ACY =X,y Y1 Zmo1| =0 (2.4)
Xm—2 Ym—2 Zm—2
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since two rows are equal. We also see that

X Y Znm
AL =X, 1 Y Zm (2.5)
Xm—2 Ym—2 Zm—2

aXmo1+B8Xmo2+7Xm-3 Yy 1+ 8Ym o+vYm3 aZpm1+BZm2+7vZm-3
= Xm—l Ym—l Zm—l
Xm—2 Ym—2 Zm—2
(2.6)
aXmo1 oYy, aZpa BXm—2 BYm—2 BZpn 2 YXm-3 YYm-3 VZm-3
= Xm—l Ym—l Zm—l + Xm—l Ym—l Zm—l + Xm—l Ym—l Zm—l
Xm—2 Ym—2 Zm—2 Xm—2 Ym—2 Zm—2 Xm—2 Ym—2 Zm—2
(2.7)

EUUNCIRING (2.8)

as long as 0 <[ < m. Furthermore, we observe that

Xm—i—k Ym—l—k Zm—l—k

Agi) = Xm-1 Ym1 Zma (29)
Xm—2 Ym—2 Zm—2

aXmik—1 OYmik—1 QZpig—1

—| Xt Yt Zme (2.10)
Xm_2 Ym—2 Zm—2

ﬁXm+k—2 BYm+k—2 BZm+k—2
+ Xm—l Ym—l Zm—l (211)
Xm_2 Ym—2 Zm—2

’YXm+k—3 ’YYm+k—3 ’YZm+k—3

+ Xm—l Ym—l Zm—l (212)
Xm_2 Ym—2 Zm—2
= aAFD 4 gAKR=2) Ly Ak=3) (2.13)

and hence, {Aﬁ’,;f) % _, is also a solution of the recurrence given in (2.1) for each fixed m > 0.
We now calculate

—~

AL = aA© 4 BAGD 4 yALD = oA (2.14)
AR = aAD + BAR +4A0Y = (a* + BAY (2.15)
AB) = (a3 + 208 4 7) NG (2.16)
AW = (o + 3028 + 20y + 52) AY (2.17)
AP = (a® + 4038 + 3a%y + 3052 + 287) ALY (2.18)
AR = (o 4508+ 4%y + 6”8 + 6aBy + 5° +77) A (2.19)

: (2.20)
AR = p. A0 (2.21)
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where P is the polynomial defined by
P.=aP;, 1+ Py o+ vP:_3 (2.22)

with initial values P_o = 0, P_1 = 0, and Py = 1. Collecting all this we obtain the following
theorem.

Theorem 2.1. If {X,,}, {Y,.}, and {Z,} are solutions of the recurrence (2.1) and AP s
defined as in (2.2), then

AR = ym=tp A0 (2.23)
where 0 <1 <m.

We also observe that whenever {X;}:°, is given with initial values Xo =0, X; =0, Xo =1
and Y, = X1 and Z, = X412 we see that P, = X9 and that

Xo X3 Xy
AR —~Am=2x, o 1XT Xy X3 (2.24)
Xo X7 Xo
1 X3 X4
:’ym_2Xk+2 0 1 X3 (225)
0 0 1
= "2 X (2.26)

by setting [ = 2. In addition, if we return to Theorem 2.1, we see that if {X;}° is given
with initial values Xo = 0, X1 = 0, Xy = 1, and {Y;}$°, is given with initial values Y = z,
Y1 =0, Yo = 1 where z is any non-zero complex constant and Z,, = Y;, 11, we have by a similar
argument that

Xo Y3 Yy
AR =y 2Xp 0| X) Y Vs (2.27)
Xo 1 Y
1 Ys Y,
=" 2 X000 1 V3 (2.28)
0 0 1
= "2 X} g, (2.29)

Hence, we have the following corollary.

Corollary 2.2. Let {X;}32, be the solution of 2.1 with initial values Xg = 0, X7 = 0, and
X9 =1. Then
Ktk Xmtk+1  Xmtkto ,
Xm—l Xm Xm+1 = ’ym_ X]H_g. (230)
Xm—2 Xm—l Xm
If in addition {Y;}5° is the solution of (2.1) with initial values Yo = 2z, Y1 =0, Yo =1 where
z 18 any non-zero complex constant, then

Xtk Ymak+1 Ymrkso )
Xin—1 Yo, Yt | = ’}/m_ Xkt (2.31)
Xm—2 Ym—l Ym
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3. APPLICATIONS

We now apply the above results to a few well-known sequences that can be written as
four term recurrence relations. Our first sequence is the Tribonacci sequence, given by the
recurrence in (2.1) with a = 1, # =1 and v = 1. In [4] eight different sets of initial values
are given for this sequence although only four of the sequences that arise from these initial
values are essentially different when we account for index shift. The first 11 terms of the four

sequences are

0 0 0 1 1
1 0 1 1 1
2 1 0 0 1
3 1 1 2 3
4 2 2 3 5
5 4 3 5 9
6 7 6 10 17
7 13 11 18 31
8 24 20 33 57
9 44 37 61 105

81 68 112 193

—_
[en}

where the values for ¢ = 0,1,2 are the initial values, i.e we have solutions {F;}2,, {G;i}2,,
{H;}2,, and {I;}5°, of (2.1). The sequence F; is the one usually named the Tribonacci
sequence in the literature, as for instance done in [2]. By an application of Corollary 2.2, we

immediately obtain the identity

Fogk Foikr1 Fgkse Fy, F5 Fy
Fr Fy Frv1 | = |F1 Fo F3| Py = Fpqo.
Frn—2 Fna F, Fy Fy Fy

Similarly by direct application of Theorem 2.1, we obtain the identity

Gm+k Gm—i—k—i—l Gm+k+2 G2 G3 G4
Gm—1 Gm Gmy1 | =|G1 G2 G3| P, =2F4
Gm-2 G-t Gm Gy G1 Go

and similarly

Hyvk Hpmtkrr Hprkyo
Hp, 1 Hp, Hm+1 = 7Fk+2
Hy, > Hpy Hy,

Ik Imikv1 Tgre2
I I, Im—i—l = 4F‘k-‘r2-
Im—2 Im—l Im

AUGUST 2013

271



THE FIBONACCI QUARTERLY

Only imagination limits the number of identities we can establish in this manner, and a few

are given below:

Fovk Fmtk+s Fmtkto
Fm—l Fm+2 Fm+5
Fm—2 Fm+1 Fm+4
Gtk Gmtk+3  Gmtk+e
Gm—l Gm+2 Gm+5
Gm-2  Gmi1 Gy
Hpvre Hpmikts Hpikro
Hp-1 Hpy2 o Hmpgs
Hp—o  Hpyr Hijgs
Itk Imiks3 Tmykte
Im—l Im+2 [m+5
Im—2 Im—i—l [m+4
Fm-‘,—k Gm+k Hm-‘,—k
Fm—l Gm—l Hm—l
Fm—2 Gm—2 Hm—2
Hm—l—k Gm—l—k Im—l—k
Hm—l Gm—l Im—l
Hm—2 Gm—2 Im—2

= Fit2 (3.5)
= 2F}12 (3.6)
= TFj12 (3.7)
= 4F}12 (3.8)
= Fit2 (3.9)
— Fio (3.10)

The four term Lucas (Trucas) sequence [5], Ly, is the solution {L;}$°, given by the same
recurrence as the Tribonacci sequence but with initial values Lo =1, L1 = 3, and Ly = 4. We

easily obtain the identities.

Lotk Lmtk+1 Lmtkt2
Lm—l Lm Lm—l—l
Lm—2 Lm—l Lm
Foik Lmyky1 Lingrgo
Fm—l Lm Lm+1
Fm—2 Lm—l Lm
Foik Ltk Lmtks1
Fm—l Lm—l Lm
Fm—2 Lm—2 Lm—l

= 11F} 9 (3.11)
= —8F42 (3.12)
= 5Fjp2 (3.13)

by application of Theorem 2.1 and Corollary 2.2. The Tribonacci polynomials 7}, (z) are defined
the solution {T},(z);}32, of the recurrence in (2.1) with coefficients o = 22, 8 = z, and v = 1,
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and initial values Ty(z) = 0, T1(z) = 0 and T>(xz) = 1. The first few polynomials are
1

Ty(z) = (3.14)
T3(z) = 2* (3.15)
Ty(z) =a* +x (3.16)
Ts(z) = 2% + 223 +1 (3.17)
Ts(x) = 2® + 32° + 322 (3.18)
Tr(x) = 2'° + 427 + 627 + 22 (3.19)
Ts(x) = 2% + 52% + 1025 + 723 + 1 (3.20)

We observe that P, = Tj2(x) and by application of Corollary 2.2, we obtain the identity

)
Tnk(®) Togks1(x)  Togkya(2)
Tr—1(x) T () Tr1(x) | = Thy2(2) (3:21)
Ti—2(x)  Tp—1(zx) T ()

which is a generalization of an identity given in [1]. We observe however that our identity has
the opposite sign compared to the one in [1] due to two interchanged columns.
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