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Abstract. Fibonomial coefficients are defined like binomial coefficients, with integers re-
placed by their respective Fibonacci numbers. For example,

(
10
3

)
F

= F10F9F8
F3F2F1

. Remarkably,(
n
k

)
F

is always an integer. In 2010, Bruce Sagan and Carla Savage derived two very nice
combinatorial interpretations of Fibonomial coefficients in terms of tilings created by lattice
paths. We believe that these interpretations should lead to combinatorial proofs of Fibonomial
identities. We provide a list of simple looking identities that are still in need of combinatorial
proof.

1. Introduction

What do you get when you cross Fibonacci numbers with binomial coefficients? Fibono-
mial coefficients, of course! Fibonomial coefficients are defined like binomial coefficients, with
integers replaced by their respective Fibonacci numbers. Specifically, for n ≥ k ≥ 1,(

n

k

)
F

=
FnFn−1 · · ·Fn−k+1

F1F2 · · ·Fk

For example,
(
10
3

)
F

= F10F9F8
F3F2F1

= 55·34·21
1·1·2 = 19,635. Fibonomial coefficients resemble binomial

coefficients in many ways. Analogous to the Pascal Triangle boundary conditions
(
n
1

)
= n and(

n
n

)
= 1, we have

(
n
1

)
F

= Fn and
(
n
n

)
F

= 1. We also define
(
n
0

)
F

= 1.

Since Fn = Fk+(n−k) = Fk+1Fn−k + FkFn−k−1, Pascal’s recurrence
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)

has
the following analog.

Identity 1.1. For n ≥ 2,(
n

k

)
F

= Fk+1

(
n− 1

k

)
F

+ Fn−k−1

(
n− 1

k − 1

)
F

.

As an immediate corollary, it follows that for all n ≥ k ≥ 1,
(
n
k

)
F

is an integer. Interesting
integer quantities usually have combinatorial interpretations. For example, the binomial co-
efficient

(
a+b
a

)
counts lattice paths from (0, 0) to (a, b) (since such a path takes a + b steps, a

of which are horizontal steps and the remaining b steps are vertical). As described in [1] and
elsewhere, the Fibonacci number Fn+1 counts the ways to tile a strip of length n with squares
(of length 1) and dominos (of length 2). As we’ll soon discuss, Fibonomial coefficients count,
appropriately enough, tilings of lattice paths!

2. Combinatorial Interpretations

In 2010 [9], Bruce Sagan and Carla Savage provided two elegant counting problems that are
enumerated by Fibonomial coefficients. The first problem counts restricted linear tilings and
the second problem counts unrestricted bracelet tilings as described in the next two theorems.
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Theorem 2.1. For a, b ≥ 1,
(
a+b
a

)
F

counts the ways to draw a lattice path from (0, 0) to (a, b),
then tile each row above the lattice path with squares and dominos, then tile each column below
the lattice path with squares and dominos, with the restriction that the column tilings are not
allowed to start with a square.

Let’s use the above theorem to see what
(
6
3

)
F

= F6F5F4
F1F2F3

= 8·5·3
1·1·2 = 60 is counting. There are(

6
3

)
= 20 lattice paths from (0, 0) to (3, 3) and each lattice path creates an integer partition

(m1,m2,m3) where 3 ≥ m1 ≥ m2 ≥ m3 ≥ 0, where mi is the length of row i. Below the path
the columns form a complementary partition (n1, n2, n3) where 0 ≤ n1 ≤ n2 ≤ n3 ≤ 3. For
example, the lattice path below has horizontal partition (3, 1, 1) and vertical partition (0, 2, 2).
The first row can be tiled F4 = 3 ways (namely sss or sd or ds where s denotes a square
and d denotes a domino). The next rows each have one tiling. The columns, of length 0, 2
and 2 can only be tiled in 1 way with the empty tiling, followed by tilings d and d since the
vertical tilings are not allowed to begin with a square. For another example, the lattice path
associated with partition (3, 2, 2) (with complementary vertical partition (0, 0, 2)) can be tiled
12 ways. These lattice paths are shown below.

(0,0)

(3,3)

3 ways

1 way

1 way

1

w
a
y

1

w
a
y

(0,0)

(3,3)

3 ways

2 ways

2 ways

1

w
a
y

Figure 1. The rows of the lattice path (3, 1, 1) can be tiled 3 ways. The
columns below the lattice path, with vertical partition (0, 2, 2) can be tiled 1
way since those tilings may not start with squares. This lattice path contributes
3 tilings to

(
6
3

)
F

. The lattice path (3, 2, 2) contributes 12 tilings to
(
6
3

)
F

.

The lattice path associated with (3, 1, 0) has no legal tilings since its vertical partition is
(1, 2, 2) and there are no legal tilings of the first column since it has length 1. There are
10 lattice paths that yield at least one valid tiling. Specifically, the paths associated with
horizontal partitions (3, 3, 3), (3, 2, 2), (3, 1, 1), (3, 0, 0), (2, 2, 2), (2, 1, 1), (2, 0, 0), (1, 1, 1),
(1, 0, 0), (0, 0, 0) contribute, respectively, 27 + 12 + 3 + 3 + 8 + 2 + 2 + 1 + 1 + 1 = 60 tilings

to
(
6
3

)
F

.

More generally, for the Fibonomial coefficient
(
a+b
a

)
F

, we sum over the
(
a+b
a

)
lattice paths

from (0, 0) to (a, b) which corresponds to an integer partition (m1,m2, . . . ,mb) where a ≥
m1 ≥ m2 · · · ≥ mb ≥ 0, and has a corresponding vertical partition (n1, n2, . . . , na) where
0 ≤ n1 ≤ n2 · · · ≤ na ≤ b. Recalling that F0 = 0 and F−1 = 1, this lattice path contributes

Fm1+1Fm2+1 · · ·Fmb+1 Fn1−1Fn2−1 · · ·Fna−1

tilings to
(
a+b
a

)
F

.
The second combinatorial interpretation of Fibonomial coefficients utilizes circular tilings,

or bracelets. A bracelet tiling is just like a linear tiling using squares and dominos, but bracelets
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also allow a domino to cover the first and last cell of the tiling. As shown in [1], for n ≥ 1, the
Lucas number Ln counts bracelet tilings of length n. For example, there are L3 = 4 tilings of
length 3, namely sss, sd, ds and d′s where d′ denotes a domino that covers the first and last
cell. Note that L2 = 3 counts ss, d and d′ where the d′ tiling is a single domino that starts
at cell 2 and ends on cell 1. For combinatorial convenience, we say there are L0 = 2 empty
tilings. The next combinatorial interpretation of Sagan and Savage has the advantage that
there is no restriction on the vertical tilings.

Theorem 2.2. For a, b ≥ 1, 2a+b
(
a+b
a

)
F

counts the ways to draw a lattice path from (0, 0) to
(a, b), then assign a bracelet to each row above the lattice path and to each column below the
lattice path.

Specifically, the lattice path from (0, 0) to (a, b) that generates the partition (m1,m2, . . . ,mb)
above the path and the partition (n1, n2, . . . , na) below the path contributes

Lm1Lm2 · · ·Lmb
Ln1Ln2 · · ·Lna

bracelet tilings to 2a+b
(
a+b
a

)
F

. Note that each empty bracelet contributes a factor of 2 to this
product. For example, the lattice path from (0, 0) to (3, 3) with partition (3, 1, 1) above the
path and (0, 2, 2) below the path contributes L3L1L1L0L2L2 = 72 bracelet tilings enumerated

by 26
(
6
3

)
F

= 64 × 60 = 3840.

(0,0)

(3,3)

L3 = 4 ways

1 way

1 way

3

ways

3

ways

L0 = 2 ways

Figure 2. The rows above the lattice path can be tiled with bracelets in 4
ways and the columns below the path can be tiled with bracelets in L0L2L2 =
2 × 3 × 3 = 18 ways. This contributes 72 bracelet tilings to 26

(
6
3

)
F

= 3840.

In their paper, Sagan and Savage extend their interpretation to handle Lucas sequences,
defined by U0 = 0, U1 = 1 and for n ≥ 2, Un = aUn−1 + bUn−2. Here Un+1 enumerates the
total weight of all tilings of length n where the weight of a tiling with i squares and j dominos
is aibj . (Alternatively, if a and b are positive integers, Un+1 counts colored tilings of length n
where there are a colors for squares and b colors for dominos.) Likewise the number of weighted
bracelets of length n is given by Vn = aVn−1 + bVn−2 with initial conditions V0 = 2 and V1 = a
(so the empty bracelet has a weight of 2). This leads to a combinatorial interpretation of
Lucasnomial coefficients

(
n
k

)
U

, defined like the Fibonomial coefficients. For example,(
10

3

)
U

=
U10U9U8

U1U2U3
.

Both of the previous combinatorial interpretations work exactly as before, using weighted (or
colored) tilings of lattice paths.
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3. Combinatorial Proofs

Now that we know what they are counting, we should be able to provide combinatorial
proofs of Fibonomial coefficient identities. For example, Identity 1.1 can be rewritten as
follows.

Identity 3.1. For m,n ≥ 1,(
m + n

m

)
F

= Fm+1

(
m + n− 1

m

)
F

+ Fn−1

(
m + n− 1

m− 1

)
F

.

Combinatorial Proof: The left side counts tilings of lattice paths from (0, 0) to (m,n). How
many of these tiled lattice paths end with a vertical step? As shown below, in all of these
lattice paths, the first row has length m and can be tiled Fm+1 ways. The rest depends on the
lattice path from (0, 0) to (m,n − 1). Summing over all possible lattice paths from (0, 0) to

(m,n− 1) there are
(
m+n−1

m

)
F

tiled lattice paths for the rest of the lattice. Hence the number

of tiled lattice paths ending in a vertical step is Fm+1

(
m+n−1

m

)
F

.

(0, 0)

(m,n)

(m,n− 1)
Fm+1 ways(

m + n− 1

m

)
F

ways

Figure 3. There are Fm+1

(
m+n−1

m

)
F

tiled lattice paths that end with a vertical step.

How many tiled lattice paths end with a horizontal step? In all such paths, the last column
has length n and can be tiled Fn−1 ways (beginning with a domino). Summing over all lattice

paths from (0, 0) to (m−1, n) there are
(
m+n−1
m−1

)
F

tiled lattice paths for the rest of the lattice.

Hence the number of tiled lattice paths ending in a horizontal step, as illustrated below, is
Fn−1

(
m+n−1
m−1

)
F

.

(0, 0)

(m− 1, n) (m,n)

(
m + n− 1

m− 1

)
F

ways

Fn−1

ways

domino

Figure 4. There are Fn−1
(
m+n−1
m−1

)
F

tiled lattice paths that end with a hori-

zontal step.

DECEMBER 2014 31



THE FIBONACCI QUARTERLY

Combining the two previous cases, the total number of tiled lattice paths from (0, 0) to

(m,n) is Fm+1

(
m+n−1

m

)
F

+ Fn−1
(
m+n−1
m−1

)
F
. �

Replacing linear tilings with bracelets and removing the initial domino restriction for vertical
tilings, we can apply the same logic as before to get

2m+n

(
m + n

m

)
F

= 2m+n−1Lm

(
m + n− 1

m

)
F

+ 2m+n−1Ln

(
m + n− 1

m− 1

)
F

.

Dividing both sides by 2m+n−1 gives us

Identity 3.2. For m,n ≥ 1,

2

(
m + n

m

)
F

= Lm

(
m + n− 1

m

)
F

+ Ln

(
m + n− 1

m− 1

)
F

.

In full disclosure, Identities 3.1 and 3.2 are used by Sagan and Savage to prove their combi-
natorial interpretations, so it is no surprise that these identities would have easy combinatorial
proofs. The same is true for the weighted (or colorized) version of these identities for Lucas-
nomial coefficients.

Identity 3.3. For m,n ≥ 1,(
m + n

m

)
U

= Um+1

(
m + n− 1

m

)
U

+ Un−1

(
m + n− 1

m− 1

)
U

.

Identity 3.4. For m,n ≥ 1,

2

(
m + n

m

)
U

= Vm

(
m + n− 1

m

)
U

+ Vn

(
m + n− 1

m− 1

)
U

.

By considering the number of vertical steps that a lattice path ends with, Reiland [8] proved

Identity 3.5. For m,n ≥ 1,(
m + n

m

)
F

=

n∑
j=0

F j
m+1Fn−j−1

(
m− 1 + n− j

m− 1

)
F

Combinatorial Proof: We count the tiled lattice paths from (0, 0) to (m,n) by considering the
number j of vertical steps at the end of the path, where 0 ≤ j ≤ n. Such a tiling begins

with j full rows, which can be tiled F j
m+1 ways. Since the lattice path must have a horizontal

step from (m− 1, n− j) to (m,n− j), the last column will have height n− j and can be tiled
(without starting with a square) in Fn−j−1 ways. The rest of the tiling consists of a tiled lattice

path from (0, 0) to (m− 1, n− j) which can be created in
(
m−1+n−j

m−1
)
F

ways. (Note that when

j = n− 1, the summand is 0, since F0 = 0, as is appropriate since the last column can’t have
height 1 without starting with a square; also, when j = n, F−1 = 1, so the summand simplifies

to Fn
m+1, as required.) All together, the number of tilings is

∑n
j=0 F

j
m+1Fn−j−1

(
m−1+n−j

m−1
)
F

,

as desired.
�

By the exact same logic, using bracelet tilings, we get

Identity 3.6. For m,n ≥ 1,

2m+n

(
m + n

m

)
F

=

n∑
j=0

Lj
mLn−j2

m+n−1−j
(
m− 1 + n− j

m− 1

)
F
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Replacing F with U and replacing L with V , the last two identities are appropriately
colorized as well.

4. Open Problems

What follows is a list of Fibonomial identities that are still in need of combinatorial proof.
Some of these identities have extremely simple algebraic proofs (and some hold for more
general sequences than Fibonomial sequences) so one would expect them to have elementary
combinatorial proofs as well.

Many simple identities appear in Fibonacci Quarterly articles by Gould [4, 5].(
n

k

)
F

(
k

j

)
F

=

(
n

j

)
F

(
n− j

k − j

)
F(

n

k

)
F

=
n∑

j=k

Fj − Fj−k
Fk

(
j − 1

k − 1

)
F

Fk

(
n

k

)
F

= Fn

(
n− 1

k − 1

)
F

= Fn−k+1

(
n

k − 1

)
F

Here is another basic identity for generalized binomial coefficients, first noted by Fontené
[3] and further developed by Trojovský [10](

n

k

)
F

−
(
n− 1

k

)
F

=

(
n− 1

k − 1

)
F

Fn − Fk

Fn−k
.

Here are some alternating sum identities, provided by Lind [7] and Cooper and Kennedy
[2], respectively, that might be amenable to sign-reversing involutions:

k+1∑
j=0

(−1)j(j+1)/2

(
k + 1

j

)
F

(
n− 1

k

)
F

= 0.

k∑
j=0

(−1)j(j+1)/2

(
k

j

)
F

F k−1
n−j = 0.

Here are some special cases of very intriguing formulas that appear in a recent paper by
Kilic, Akkus and Ohtsuka [6].

2n+1∑
k=0

(
2n + 1

k

)
F

=
n∏

k=0

L2k

2n∑
k=0

(−1)k
(

4n

2k

)
F

= (−1)n
2n∏
k=1

L2k−1

We have just scratched the surface here. There are countless others!

DECEMBER 2014 33



THE FIBONACCI QUARTERLY

References

[1] A. T. Benjamin and J. J. Quinn. Proofs That Really Count: The Art of Combinatorial Proof, The Dolciani
Mathematical Expositions, 27, Mathematical Association of America, Washington DC, 2003.

[2] C. Cooper and R. E. Kennedy. Proof of a Result by Jarden by Generalizing a Proof by Carlitz, Fib. Quart
33.4 (1995) 304–310.
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