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Abstract. A beautiful theorem of Zeckendorf states that every integer can be written
uniquely as the sum of non-consecutive Fibonacci numbers {Fi}∞i=1. A set S ⊂ Z is said to
satisfy Benford’s law if the density of the elements in S with leading digit d is log10 (1 + 1

d
).

We prove that, as n → ∞, for a randomly selected integer m in [0, Fn+1) the distribution
of the leading digits of the Fibonacci summands in its Zeckendorf decomposition converge
to Benford’s law almost surely. Our results hold more generally; instead of looking at the
distribution of leading digits of summands in Zeckendorf decompositions, one obtains simi-
lar theorems concerning how often values in sets with positive density inside the Fibonacci
numbers are attained in these decompositions.
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1. Introduction

1.1. History.

The Fibonacci numbers have fascinated professional mathematicians and amateurs for cen-
turies. The purpose of this article is to review the connection between two interesting results,
namely Zeckendorf’s theorem and Benford’s law of digit bias, and to discuss density results
that arise in special subsets of the Fibonacci numbers.

A beautiful theorem due to Zeckendorf [28] states that every positive integer may be written
uniquely as a sum of non-adjacent Fibonacci numbers. The standard proof is by straightfor-
ward induction and the greedy algorithm (though see [18] for a combinatorial approach). For
this theorem to hold we must normalize the Fibonacci numbers by taking F1 = 1 and F2 = 2
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THE FIBONACCI QUARTERLY

(and of course Fn+1 = Fn + Fn−1), for if our series began with two 1’s or with a 0 the
decompositions of many numbers into non-adjacent summands would not be unique.

In 1937 the physicist Frank Benford [2], then working for General Electric, observed that the
distributions of the leading digits of numbers in many real and mathematical data sets were
not uniform. In fact, the leading digits of numbers from various sources such as atomic weights,
baseball statistics, numbers in periodicals and values of mathematical functions or sequences
seemed biased towards lower values; for instance, a leading digit of 1 occurred about 30% of
the time, while a leading digit of 9 occurred less than 5% of the time. We now say a data set
satisfies Benford’s law (base B) if the probability of a first digit base B of d is logB(1 + 1/d),
or more generally the probability that the significand1 is at most s is logB(s). Benford’s law
has applications in disciplines ranging from accounting (where it is used to detect fraud) to
zoology and population growth, and many areas between. While this bias is often initially
surprising, it is actually very natural as Benford’s law is equivalent to the logarithms of the
set being equidistributed modulo 1. For more on Benford’s law see [15, 16, 21, 24], as well as
[20] for a compilation of articles on its theory and applications.

Obviously, we would not be discussing Benford’s law if it had no connection to the Fibonacci
numbers. A fascinating result, originally published in [5] (see also [21, 27]), states that the
Fibonacci numbers follow Benford’s law of digit bias.2 There are many questions that may be
asked concerning the connection between the Fibonacci numbers and Benford’s law. This re-
search was motivated by the study of the distribution of leading digits of Fibonacci summands
in Zeckendorf decompositions. Briefly, our main result is that the distribution of leading digits
of summands in Zeckendorf decompositions converges to Benford’s law. Our result is more
universal, and in fact holds for special sequences with density. We first set some notation, and
then precisely state our results.

1.2. Preliminaries.

Let S ⊂ {Fi}∞i=1, and let q(S, n) be the density of S over the Fibonacci numbers in the
interval [0, Fn]. That is,

q(S, n) =
#{Fi ∈ S : 1 ≤ i ≤ n}

n
. (1.1)

When limn→∞ q(S, n) exists, we define the asymptotic density q(S) as

q(S) := lim
n→∞

q(S, n). (1.2)

For the sake of completeness, we define a mapping between the positive integers and their
Zeckendorf decompositions. We first note that a legal Zeckendorf decomposition is the unique
decomposition of a number into non-adjacent Fibonacci numbers.

Definition 1.1. Let m ∈ N. The function ZD injectively maps each m ∈ N to the set of
its Zeckendorf summands. Conversely, ZD−1 injectively maps each legal set of Zeckendorf
summands to the positive integer that set represents.

For example, ZD(10) = {2, 8} and ZD−1({8, 34}) = 42; however, ZD−1({8, 13}) is undefined,
as 21 = 8 + 13 is not a legal Zeckendorf decomposition.

1If x > 0 we may write x = SB(x)10k(x), where SB(x) ∈ [1, B) is the significand and k(x) ∈ Z is the
exponent.

2The main idea of the proof is to note that log10

(
1+
√
5

2

)
is irrational, and then use Weyl’s criterion and

Binet’s formula to show the logarithms of the Fibonacci numbers converge to being equidistributed modulo 1.
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Let m ∈ N be chosen uniformly at random from the interval [0, Fn+1). We define two useful
random variables:

Xn(m) := #ZD(m), Yn(m) := #ZD(m) ∩ S. (1.3)

In our main result, we show that the density of S in a typical Zeckendorf decomposition is
asymptotic to the density of S in the set of Fibonacci numbers.

Theorem 1.2 (Density Theorem for Zeckendorf Decompositions). Let S ⊂ {Fi}∞i=1 with
asymptotic density q(S) in the Fibonacci numbers. For m ∈ N chosen uniformly at random
from the interval [0, Fn+1), let Xn(m) and Yn(m) be defined as above. Then for any ε > 0, we
have with probability 1 + o(1) that ∣∣∣∣ Yn(m)

Xn(m)
− q(S)

∣∣∣∣ < ε. (1.4)

We now define a method of constructing a random Zeckendorf decomposition, which plays
a central role in our proofs. Essentially, we want to select a random subset of the Fibonacci
numbers which satisfy the criterion of being a legal Zeckendorf decomposition. We fix a
probability p ∈ (0, 1) and let An(p) be a random subset of Fibonacci numbers at most Fn. Let
A0(p) = ∅, and define An(p) recursively for n > 0 as follows. We set

An(p) =


An−1(p) if Fn−1 ∈ An−1(p)

An−1(p) ∪ Fn with probability p if Fn−1 /∈ An−1(p)

An−1(p) otherwise,

(1.5)

and define

A(p) :=
⋃
n

An(p). (1.6)

This random process leads to the following result.

Theorem 1.3 (Density Theorem for Random Decompositions). Let S ⊂ {Fi}∞i=1 have as-
ymptotic density q(S) over the Fibonacci numbers. Then, with probability 1, S ∩ A(p) has
asymptotic density q(S) in A(p).

We use Theorem 1.3 with the clever choice of probability of p = 1/ϕ2 to prove Theorem
1.2. The reason for this choice is that this random Zeckendorf decomposition is similar to the
Zeckendorf decomposition of an integer chosen uniformly at random.

We now describe some situations where Theorem 1.3 applies. There are many interesting
situations where S ⊂ {Fi}∞i=1 has a limiting density over the Fibonacci numbers. As the
Fibonacci numbers follow Benford’s law, the set Sd of Fibonacci number with a fixed leading
digit 1 ≤ d ≤ 9 has asymptotic density q(Sd) = log (1 + 1/d) in the Fibonacci numbers. By an
extension of Benford’s law, the Fibonacci numbers in which a finite amount of leading digits
are fixed also have asymptotic density over the Fibonacci numbers. Conversely, we could fix
a finite set of digits at the right and obtain similar results. For example, if we look at the
Fibonacci numbers modulo 2 we get 1, 0, 1, 1, 0, 1, 1, 0, . . . ; thus in the limit one-third of the
Fibonacci numbers are even, and the asymptotic density exists. These arguments immediately
imply Benford behavior of the Zeckendorf decompositions.

Corollary 1.4 (Benford Behavior in Zeckendorf Decompositions). Fix positive integers D and
B, and let

DD := {(d1, . . . , dD) : d1 ≥ 1, di ∈ {0, 1, . . . , B − 1}}; (1.7)
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to each (d1, . . . , dD) ∈ DD we associate the set Sd1,...,dD of Fibonacci numbers whose significand
starts d1.d2d3 · · · dD. With probability 1, for each (d1, . . . , dD) we have the asymptotic density
of Sd1,...,dD ∩A(p) equals logB(d1.d2d3 · · · dD), and thus with probability 1 Benford’s law holds.

Proof. As D is fixed and finite, there are only finitely many starting blocks for significands
in DD. By Theorem 1.3 for each of these the asymptotic density of Sd1,...,dD ∩ S(p) equals
the corresponding Benford probability; as the intersection of finitely many events that each
happen with probability 1 happens with probability 1, we see that with probability 1, all the
significands of length D happen with the correct probability. Sending D → ∞ yields the
desired Benford behavior. �

As a check of our Benfordness results, we performed two simple experiments. The first was
an exhaustive search of all m ∈ [F25, F26) = [121393, 196418). We performed a chi-square
goodness of fit test on the distribution of first digits of summands for each m and Benford’s
law. There are eight degrees of freedom, and 99.74% of the time our chi-square values were
below the 95% confidence threshold of 15.51, and 99.99% of the time they were below the 99%
confidence threshold of 20.09. We then randomly chose a number in [1060000, 1060001), and
found a chi-square value of 8.749. See Figure 1 for a comparison between the observed digit
frequencies and Benford’s law.

Figure 1. Comparison of the frequencies of leading digits in Zeckendorf
decompositions of a large random integer, approximately 7.94 · 1060000, and
Benford’s law (the solid curve is 1/(x log 10), the Benford density).

To prove our main results we first state and prove some lemmas about random legal de-
compositions. The key observation is that for an appropriate choice of p, the set A(p) derived
from the random process defined in (1.5) acts similarly to the Zeckendorf decomposition of a
randomly chosen integer m ∈ [0, Fn+1). Theorem 1.2 thus becomes a consequence Theorem
1.3, which we prove through Chebyshev’s inequality.

2. Proof of Theorem 1.2

In this section, we assume the validity of Theorem 1.3 in order to prove Theorem 1.2. The
proof of Theorem 1.3 is given in §3. We begin with a useful lemma on the probability that
ZD−1(A(p)) equals m. We find that m ∈ [0, Fn+1) are almost uniformly chosen.

Lemma 2.1. With An(p) defined as in (1.5), ZD−1(An(p)) ∈ [0, Fn+1) is a random variable.
For a fixed integer m ∈ [0, Fn+1) with the Zeckendorf decomposition m = Fa1 +Fa2 + · · ·+Fak ,
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where k ∈ N, 1 ≤ a1, a1 + 1 < a2, . . . , ak−1 + 1 < ak, we have

Prob
(
ZD−1 (An(p)) = m

)
=

{
pk(1− p)n−2k if m ∈ [0, Fn)

pk(1− p)n−2k+1 if m ∈ [Fn, Fn+1).
(2.1)

Proof. With probability (1 − p)a1−1p, Fa1 is the smallest element of An(p). For j ∈ Z,
suppose that Fa1 , Fa2 , . . . , Faj−1 be the j − 1 smallest elements of An(p). With probability

(1 − p)aj−aj−1−2p, Faj is the next smallest element of An(p); the reason we have a -2 in the
exponent is that once we select Faj−1 we cannot have Faj−1+1, and thus there are aj−aj−1−2
Fibonacci numbers between Faj−1+1 and Faj−1 which we could have selected (but did not).

Continuing, we find ZD−1 (An(p)) = m if and only if the k smallest elements of An(p) are
Fa1 , Fa2 , . . . , Fak and Fj /∈ An(p) for j > ak; note if ak = n then we are done determining if we
have or do not have summands, while if ak < n we must elect not to have Fak+1, . . . , Fn and
thus need another n− ak − 1 factors of 1− p. Then, by these calculations, ZD−1 (An(p)) = m
with probability

Prob
(
ZD−1 (An(p)) = m

)
= (1− p)a1−1p

 k∏
j=2

(1− p)aj−aj−1−2p

 (1− p)n−ak−δk , (2.2)

where δk = 1 if ak < n and 1 if ak = n. The first case happens when m ∈ [0, Fn) and the
second when m ∈ [Fn, Fn+1); (2.1) now follows from simple algebra. �

The key idea in proving Theorem 1.2 is to consider the special case of p = 1/ϕ2 in Lemma

2.1, where ϕ := 1+
√
5

2 is the golden mean.3 The reason this is an exceptionally useful choice is
that initially the probability of choosing m in our random process A(p) depends on the number
of summands of m; however, for p = 1/ϕ2 we have pk(1− p)−2k = 1. Thus in this case, for m
an integer in [0, Fn+1) we see that (2.2) reduces to

Prob
(
ZD−1

(
An(ϕ−2)

)
= m

)
=

{
ϕ−n if m ∈ [0, Fn)

ϕ−(n+1) if m ∈ [Fn, Fn+1).
(2.3)

Note this is nearly independent of m; all that matters is whether or not it is larger than Fn.
The desired result follows from straightforward algebra.4

We now are ready to prove Theorem 1.2.

Proof of Theorem 1.2. For a fixed ε > 0, let

E(n, ε) :=

{
m ∈ Z ∩ [0, Fn+1) :

∣∣∣∣ Yn(m)

Xn(m)
− q(S)

∣∣∣∣ ≥ ε

}
. (2.4)

3For us, the importance of ϕ is that it is the largest root of the characteristic polynomial for the Fibonacci
recurrence, and by Binet’s formula it governs the growth of the sequence.

4As a quick check, note Fnϕ
−n + (Fn+1 − Fn)ϕ−(n+1) = 1, as required for a probability.
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By Theorem 1.3, for m chosen uniformly at random from the integers in [0, Fn+1), we have

Prob (m ∈ E(n, ε)) =
∑

x∈E(n,ε)

1

Fn+1

= O

 ∑
x∈E(n,ε)

Prob
(
ZD−1

(
An(ϕ−2)

)
= x

)
= O

(
Prob

(
ZD−1

(
An(ϕ−2)

)
∈ E(n, ε)

))
= o(1). (2.5)

We conclude that
∣∣∣ Yn(m)
Xn(m) − q(S)

∣∣∣ < ε with probability 1 + o(1). �

3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We first prove some useful lemmas.

Lemma 3.1. Let A(p) ⊂ {Fn}∞n=1 be constructed as in (1.5) with probability parameter p ∈
(0, 1). Then

Prob (Fk ∈ A(p)) =
p

p+ 1
+O(pk). (3.1)

Proof. By conditioning on whether Fk−2 ∈ A(p), we obtain a recurrence relation:5

Prob (Fk ∈ A(p)) = Prob (Fk ∈ A(p) | Fk−2 ∈ A(p)) · Prob (Fk−2 ∈ A(p))

+ Prob (Fk ∈ A(p) | Fk−2 /∈ A(p)) · Prob (Fk−2 /∈ A(p))

= p · Prob (Fk−2 ∈ A(p)) + p(1− p) · Prob (Fk−2 /∈ A(p))

= p2 · Prob (Fk−2 ∈ A(p)) + p− p2. (3.2)

As Prob (F1 ∈ A(p)) = p and Prob (F2 ∈ A(p)) = (1− p)p = p− p2, we have

Prob (Fk ∈ A(p)) = (Prob (F1 ∈ A(p)))2 · Prob (Fk−2 ∈ A(p)) + Prob (F2 ∈ A(p)) . (3.3)

From induction and the geometric series formula we immediately obtain for all k that

Prob (Fk ∈ A(p)) =
k∑
j=1

(−1)j+1pj =
p

1 + p
+O(pk), (3.4)

completing the proof. �

Lemma 3.2. Let Wn be the random variable defined by Wn := #An(p). Then

E[Wn] =
np

1 + p
+O(1) and Var(Wn) = O(n). (3.5)

Proof. Define the indicator function χ(Fk) for k ∈ N by

χ(Fk) :=

{
1 if Fk ∈ A(p)

0 if Fk /∈ A(p).
(3.6)

5We can also give a simple heuristic suggesting the main term of the answer. For k large, the probability Fk

occurs should roughly be the same as the probability that Fk−1 is used; call this x. Then x ≈ (1−x)p (to have
Fk we must first not have taken Fk−1, and then once this happens we choose Fk with probability p), which
implies x ≈ p/(1 + p) as claimed.
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We note that Wn =
∑n

k=1 χ(Fk) and by linearity of expectation have

E[Wn] =
n∑
k=1

E[χ(Fk)]

=
n∑
k=1

Prob (Fk ∈ A(p))

=
n∑
k=1

(
p

1 + p
+O(pk)

)
=

np

1 + p
+O(1). (3.7)

To find the variance we use that it equals E[W 2
n ]−E[Wn]2. Without loss of generality, when

we expand below we may assume i ≤ j and double the contribution of certain terms. As
we cannot have Fi and Fi+1, there are dependencies. While we could determine the variance
exactly with a bit more work, for our applications we only need to bound its order of magnitude.

E[W 2
n ] = E

( n∑
k=1

χ(Fk)

)2


= E

∑
i,j≤n

χ(Fi) · χ(Fj)


=

∑
i,j≤n

E[χ(Fi) · χ(Fj)]

=
∑
i,j≤n

Prob (Fi ∈ A(p)) Prob (Fj ∈ A(p)|Fi ∈ A(p))

=
∑
i≤n

Prob (Fi ∈ A(p)) + 2
∑

i+2≤j≤n
Prob (Fi ∈ A(p)) Prob (Fj ∈ A(p)|Fi ∈ A(p))

= O(n) + 2
∑

i+2≤j≤n
Prob (Fi ∈ A(p)) Prob (Fj−i−1 ∈ A(p))

= O(n) + 2
∑

i+2≤j≤n

(
p

1 + p

)2 (
1 +O

(
pmin(i,j−i)

))

≤ O(n) +

(
np

1 + p

)2

+O

 ∑
i+2≤j≤n

pmin(i,j−i)

 . (3.8)

For a fixed k = 1, 2, . . . , n − 1, there are less than n pairs (i, j) with k = i < j − i and
i + 2 ≤ j ≤ n. Similarly, there are less than n pairs (i, j) with k = i − j ≤ i, i + 2 ≤ j ≤ n.
Therefore, there are less than 2n pairs (i, j) for which min(i, j − i) = k. Thus

∑
i+2≤j≤n

pmin(i,j−i) < 2n
n−1∑
k=1

pk = O(n), (3.9)
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and therefore

E[W 2
n ] =

(
np

1 + p

)2

+O(n) = E[Wn]2 +O(n). (3.10)

We conclude that

Var(Wn) = O(n), (3.11)

completing the proof. �

Corollary 3.3. Let Wn be the random variable defined by Wn := #An(p). With probability
1 + o(1), ∣∣∣∣Wn −

np

1 + p

∣∣∣∣ < n2/3. (3.12)

Proof. From (3.7) we know E[Wn] = np
1+p + O(1). For n large, if

∣∣∣Wn − np
1+p

∣∣∣ ≥ n2/3 then

|Wn − E[Wn]| ≥ n2/3/2015. By Chebyshev’s inequality we have

Prob

(
|Wn − E[Wn]| ≥ n2/3

2015

)
≤ 20152Var(Wn)

n4/3
= o(1) (3.13)

as by (3.11) the variance of Wn is of order n. �

Lemma 3.4. Let S ⊂ {Fn}∞n=1 with asymptotic density q(S) in the Fibonacci numbers. Let
Zn be the random variable defined by Zn := #An(p) ∩ S. Then

E[Zn] =
npq(S)

1 + p
+ o(n)

Var(Zn) = o(n2). (3.14)

Proof. Define the indicator function ψ(Fk) for k ∈ N by

ψ(Fk) =

{
1 if Fk ∈ S
0 if Fk /∈ S.

(3.15)

Then we have

E[Zn] =
n∑
k=1

ψ(Fk)Prob (Fk ∈ A(p))

=
n∑
k=1

ψ(Fk)

(
p

1 + p
+O(pk)

)

= O(1) +
p

1 + p

n∑
k=1

ψ(Fk)

=
npq(S)

1 + p
+ o(n) (3.16)

since limn→∞ q(S, n) = q(S).
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Similarly to the calculation in Lemma 3.2, we compute

E[Z2
n] =

∑
i,j≤n

ψ(Fi)ψ(Fj)Prob (Fi ∈ A(p)) Prob (Fj ∈ A(p)|Fi ∈ A(p))

= O(n) + 2
∑

i+2≤j≤n
ψ(Fi)ψ(Fj)Prob (Fi ∈ A(p)) Prob (Fj−i−1 ∈ A(p))

= O(n) + 2
∑

i+2≤j≤n
ψ(Fi)ψ(Fj)

(
p

1 + p

)2 (
1 +O

(
pmin(i,j−i)

))
= O(n) + 2

(
p

1 + p

)2 ∑
i+2≤j≤n

ψ(Fi)ψ(Fj)

= o(n2) +

(
npq(S)

1 + p

)2

. (3.17)

In the calculation above, the only difficulty is in the second to last line, where we argue that
the main term of the i and j double sum is n2q(S)2/2. To see this, note by symmetry that up
to contributions of size O(n) we can remove the restrictions on i and j (and thus have each
range from 1 to n) if we then take half of the resulting sum. Thus, the restricted double sum

becomes 1
2

(∑
i≤n ψ(Fi)

)(∑
j≤n ψ(Fj)

)
, which as n→∞ converges to 1

2q(S)n · q(S)n (up to

an error of size o(n2), of course). Therefore, we have

Var(Zn) = E[Z2
n]− E[Zn]2 = o(n2), (3.18)

which completes the proof. �

Corollary 3.5. Let Zn be the random variable defined by Zn := #An(p) ∩ S, and let g(n) =

n1/2Var(Zn)−1/4. Then

Prob

(
|Zn − E[Zn]| > E[Zn]

g(n)

)
≤ Var(Zn)g(n)2

E[Zn]2
= o(1). (3.19)

Proof. The proof follows immediately by Chebyshev’s inequality and the order of magnitude
of the various quantities. �

Armed with the above results, we can now prove our main theorem.

Proof of Theorem 1.3. Let

e1(n) = n−1/3,

e2(n) =
1

n

(
E[Zn]

g(n)
+

∣∣∣∣E[Zn]− npq(S)

1 + p

∣∣∣∣) . (3.20)

Note that both are of order o(1). We combine Corollaries 3.3 and 3.5 to see that with
probability 1 + o(1) we have

Zn ≤
npq(S)

1 + p
(1 + e2(n)),

Wn ≥
np

1 + p
(1− e1(n)). (3.21)
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Therefore, for any ε > 0 we have with probability 1 that

lim
n→∞

Zn
Wn

≤ lim
n→∞

q(S)(1 + e2(n))

1− e1(n)
= q(S). (3.22)

A similar argument gives q(S) as a lower bound for limn→∞ Zn/Wn, and thus with probability
1

lim
n→∞

Zn
Wn

= q(S), (3.23)

as desired. �

4. Conclusion and Future Work

We were able to handle the behavior of almost all Zeckendorf decompositions by finding
a correspondence between these and a special random process, replacing the deterministic
behavior for each m ∈ [0, Fn) with random behavior which is easier to analyze. The key
observation was that this correspondence held when choosing p = 1/ϕ2. This allowed us to
prove not just Benford behavior for the leading digits of summands in almost all Zeckendorf
decompositions, but also similar results for other sequences with density.

In [4] we revisit these problems for more general recurrences, where there is an extensive
literature (see among others [1, 8, 9, 10, 11, 12, 13, 14, 17, 19, 22, 23, 25, 26]). Similar to
other papers in the field (for example, [18] versus [22], or [6] versus [7]), the arguments are
often easier for the Fibonacci numbers, as we have simpler and more explicit formulas at our
disposal. In the more general case we introduce the notion of a super-legal decomposition,
which aids in the arguments.

Instead of choosing our integers uniformly in [0, Fn+1) one can consider other models, such
as choosing elements in [0,M) with M →∞ or various sub-intervals of [0, Fn+1). For most of
these choices we expect to see similar behavior; we analyze many of these cases in [3].
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