
PROBLEM PROPOSALS

COMPILED BY CLARK KIMBERLING

These fourteen problems were posed by participants of the Sixteenth International Con-
ference on Fibonacci Numbers and Their Applications, Rochester Institute of Technology,
Rochester, New York, July 24, 2014. A few solutions and partial solutions, received during
August-December, are included.

Problem 1, posed by Marjorie Johnson
Prove or disprove that the only Pythagorean triples containing exactly two Fibonacci num-

bers are 3, 4, 5 and 5, 12, 13.

Problem 2, posed by Heiko Harborth and Jens-P. Bode
Two players A and B choose alternatingly an integer. Does there exist a strategy for A

to choose integers n, n + 2, n + 3, and n + 5 for some n, or, equivalently, does there exist a
strategy for B to prevent A from this objective?

Problem 3, posed by Clark Kimberling
Observe that

1/6 + 1/7 + 1/8

< 1/9 + · · ·+ 1/13

< 1/14 + · · ·+ 1/21

< 1/22 + · · ·+ 1/34

Let H(n) = 1/1 + 1/2 + · · · + 1/n, so that the observation can be written using Fibonacci
numbers as

H(8)−H(5)

< H(13)−H(8)

< H(21)−H(13)

< H(34)−H(21)

More generally, if x ≤ y, let

a(1) = least k such that H(y)−H(x) < H(k)−H(y);

a(2) = least k such that H(a(1))−H(y) < H(k)−H(a(1));

a(n) = least k such that H(a(n− 1))−H(a(n− 2))

< H(k)−H(a(n− 1)),

for n ≥ 3. Prove that if (x, y) = (5, 8), then a(n) = F (n + 6), and determine all (x, y) for
which (a(n)) is linearly recurrent.

Problem 4, posed by Peter Anderson
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THE FIBONACCI QUARTERLY

Let un+1 = un + un−k, for n ≥ k, where ui = 0 for i = 0, 1, . . . , k − 1 and uk = 1. Let
α be the largest real root of the companion polynomial. For k = 3, show how to obtain the
Bergman representation of every positive integer. For k > 4, show that there is no finite
Bergman representation of 2.

Problem 5.1, posed by Dale Gerdemann (problem 5, version 1, as proposed
in Rochester)

In “Bergman-Fibonacci” representation,

1 = 1.0 = 1 + 0

2 = 1.01 = 1 + 1

3 = 10.01 = 2 + 1

4 = 101.01 = 3 + 1

5 = 1000.1001 = 3 + 2.

What is the ratio of the values of the positive digits to the value of the negative digits? Does
it approach a limit?

Empirical solution by Margaret P. Kimberling, Lynda J. Martin, and Peter J.
C. Moses. “Bergman-Fibonacci” representations use base ϕ = (1 +

√
5)/2 with ϕn replaced

by Fn+1, so that the five examples are interpreted as

1 = F1 + F0 = 1 + 0

2 = F2 + F−1 = 1 + 1

3 = F3 + F−1 = 2 + 1

4 = F3 + F1 + F−1 = 3 + 1

5 = F4 + (F0 + F−3) = 3 + 2.

Thus each n has a representation of the form x.y = u+ v, where u and v are the positive part
and negative part, respectively. We claim that the ratios are given by

u/v = u(n)/v(n) = (1 + k)/(n− k − 1),

where k = b(n− 1)/(3− ϕ)c , and that lim
n→∞

u(n)/v(n) = ϕ+ 1.

The claim is based on the following Mathematica code, which finds the Bergman-Fibonacci
representation of n, using the first 1000 base 10 digits of ϕ:

phiBase[n ] := Last[#] - Flatten[Position[First[#], 1]] &
[RealDigits[n, GoldenRatio, 1000]];

To see the representation for an example, say n = 12, add this line of code:

test = 12; SplitBy[phiBase[test] + 1, # > 0 &]

which shows {{6}, {0,−2,−1}}, i.e.,

F6 + (F0 + F−2 + F−3) = 8 + [0 + (−1) + 5] = 12.
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In this example, u = 8 and v = 0 + (−1) + 5 = 4. The code can be extended to obtain

2 10.01 1/1
3 100.01 2/1
4 101.01 3/1
5 1000.1001 3/2
6 1010.0001 4/2
7 10000.0001 5/2
8 10001.0001 6/2
9 10010.0101 6/3
10 10100.0101 7/3
11 10101.0101 8/3
12 100000.101001 8/4
13 100010.001001 9/4
14 100100.001001 10/4
15 100101.001001 11/4
16 101000.100001 11/5

The denominators in column 3 form the sequence (1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, . . .), of which the
difference sequence is (0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, . . .), which appears to be the sequence indexed
in OEIS [2] as A221150, authored by Neil Sloane in 2013. Information given at A221150
enables use to find v(n) = n+ b(n− 1)/(ϕ− 3)c . The difference sequence for the numerators
appears to be the binary complement of A221150, (1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, . . .),
leading to u(n) = 1+ b(n− 1)/(3− 3ϕ)c . The fractions u/v for 2 ≤ n ≤ 60 and 2 ≤ n ≤ 1000
are depicted here:

u/v for 2 ≤ n ≤ 60
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u/v for 2 ≤ n ≤ 1000

As a somewhat randomly selected example take n = 46792386. Then SplitBy[phiBase[test]
+ 1, # > 0 &] gives

{{37, 35, 28, 26, 23, 19, 17, 13, 11, 9, 6, 4},
{0,−5,−7,−9,−11,−15,−17,−22,−27,−33,−35}},

which represents

u = F37 + F35 + F28 + F26 + F23 + F19 + F17 + F13 + F11

+ F9 + F6 + F4

= 33859288;

v = F0 + F−5 + F−7 + F−9 + F−11 + F−15 + F−17 + F−22 + F−27

+ F−33 + F−35

= 12933098.

It can now be checked that u/v in this case agrees with the asserted formula. Finally, it is
easy to check that if u(n) and v(n) are as asserted, then lim

n→∞
u(n)/v(n) = ϕ+ 1.

References.
[1] Bergman, G. A number system with an irrational base, Mathematics Magazine 31 (1957-

58) 98-110.
[2] Online Encyclopedia of Integer Sequences, https://oeis.org/

Partial solution by Dale Gerdemann. This is a partial proof of the following statement:
In Bergman-Fibonacci representation (golden ratio base with each ϕn replaced by fn, where
f0 = 1, f1 = 1, fn = fn−1 + fn−2, fn = fn+2 − fn−1), the ratio of the positively indexed
Fibonacci numbers to the negatively indexed Fibonacci numbers converges to ϕ + 1. I limit
myself here to proving the weaker statement that if this sequence converges, then it converges
to ϕ+1. My strategy is to find a convergent subsequence consisting of the simplest Bergman-
Fibonacci representations and then to employ this basic fact about limits: Every subsequence
of a convergent sequence converges, and its limit is the limit of the original sequence.
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The simplest Bergman-Fibonacci representations are for the odd-indexed Lucas numbers,
and the second simplest are for the even indexed Lucas numbers, where the Lucas numbers
are indexed here starting with L0 = −1 and L1 = 2:

L2n−1 = f2n−2 + f−2n+2

L2n = f2n−2 + f2n−4 + · · ·+ f0 + · · ·+ f−2n+4 + f−2n+2.

For an inductive proof, note that these two statements are true for the following base case:
L4 = f2 + f0 + f−2. For the inductive steps, note that

L2n+1 = L2n−1 + L2n

= 2f2n−2 + f2n−4 + · · ·+ f0 + · · ·+ f−2n+4 + 2f−2n+2

= f2n + f−2n

L2n+2 = L2n+1 + L2n

= f2n + f2n−2 + · · ·+ f0 + · · ·+ f−2n+2 + f−2n.

Now consider the positive-indexed to negative-indexed ratio for the subsequence of odd-indexed
Lucas numbers:

. . .
f2n−2
f−2n+2

,
f2n
f−2n

,
f2n+2

f−2n−2
, . . . .

Since the denominators are even-indexed, the negative indexing can be eliminated:

. . .
f2n−2
f2n−4

,
f2n
f2n−2

,
f2n+2

f2n
, . . . .

Now, as is well known, the ratio of adjacent Fibonacci numbers converges to ϕ, so that the
ratio of these two-apart Fibonacci numbers converges to ϕ2 = ϕ+ 1.

Problem 5.2, posed by Dale Gerdemann (problem 5, version 2)
Golden ratio base differs from more familiar integer bases in that it uses both positive and

negative powers of the base to represent an integer. For example, the number m = 100 is
represented as the sum

ϕ9 + ϕ6 + ϕ3 + ϕ+ ϕ−4 + ϕ−7 + ϕ−10,

where ϕ = (1 +
√

5)/2. Here the contribution of the positive powers is much greater than the
contribution of the negative powers. Note what happens, however, when the powers of ϕ are
replaced by corresponding Fibonacci numbers (using the combinatorial definition: f0 = 1,
f1 = 1, fn = fn−1 + fn−2, fn = fn+2 − fn−1):

f9 + f6 + f3 + f1 + f−4 + f−7 + f−10

= 55 + 13 + 3 + 1 + 2− 8 + 34

= 100

This replacement does not change the sum, which remains 100. However, the negatively
indexed Fibonacci numbers play a larger role than the corresponding negative powers in golden
ratio base. Here the positively indexed Fibonacci numbers sum to 72, the negative ones sum
to 28, and the ratio 72/28 = 2.571... . Prove that as m increases, this ratio approaches ϕ+ 1.

Problem 6, posed by Curtis Cooper

DECEMBER 2014 9
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The following two statements are true: If g5 = 2, then

3
√

5g2 + 1 + 3
√

35g2 + g − 43
3
√

5g2 + 1− 3
√

35g2 + g − 43
=

2 + g − g2

−g + g2
,

and if g7 = 2, then

5
√

15g3 + 11g2 + 15g + 12 + 5
√
−270g4 − 259g3 + 346g2 + 315g + 14

5
√

15g3 + 11g2 + 15g + 12− 5
√
−270g4 − 259g3 + 346g2 + 315g + 14

=
2 + g − g2

−g + g2
.

Find similar true statements for gk = 2 where k ≥ 9 is an odd integer.

Solutions by Sam Northshield for k = 7, 9, 11, and 13. For k = 7, we present a solution
distinct from the one stated just above (g4 does not appear in our new solution).

5
√
A+ 5

√
B

5
√
A− 5

√
B

=
2 + g − g2

−g + g2
if g7 = 2,

A = −15g3 − 6239g2 + 255g − 6438,

B = 112561g3 + 20246g2 − 160155g − 6836.

7
√
A+ 7

√
B

7
√
A− 7

√
B

=
2 + g − g2

−g + g2
if g9 = 2,

A = 8980553g4 + 7941290g3 + 15149890g2 + 6386905g + 11823140,

B = −45991056g4 − 420491442g3 − 440508591g2 + 579500187g + 511466434.

9
√
A+ 9

√
B

9
√
A− 9

√
B

=
2 + g − g2

−g + g2
if g11 = 2,

A = a5g
5 + a4g

4 + a3g
3 + a2g

2 + a1g + a0,

B = b5g
5 + b4g

4 + b3g
3 + b2g

2 + b1g + b0,

b5 = −2832370277, b4 = 2254685169, b3 = 4298350067,

b2 = −4610451384, b1 = −2556248098, b0 = 3738894258,

a5 = 1050574, a4 = −915414, a3 = 9829317,

a2 = −12489450, a1 = 8175912, a0 = −8267688.

11
√
A+ 11

√
B

11
√
A− 11

√
B

=
2 + g − g2

−g + g2
if g13 = 2,

10 VOLUME 52, NUMBER 5
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A = a6g
6 + a5g

5 + a4g
4 + a3g

3 + a2g
2 + a1g + a0,

B = b6g
6 + b5g

5 + b4g
4 + b3g

3 + b2g
2 + b1g + b0,

b6 = 18362391990345, b5 = 10955091993365, b4 = −54313592877440,

b3 = −15431135576532, b2 = 68772473586419, b1 = 5062921298005,

b0 = −36107722357990, a6 = −22949055914, a5 = 10769387302,

a4 = −30534819159, a3 = 46896418382, a2 = −29067883130,

a1 = 33833389975, a0 = −6861047820.

13
√
A+ 13

√
B

13
√
A− 13

√
B

=
2 + g − g2

−g + g2
if g15 = 2,

A = a7g
7 + a6g

6 + a5g
5 + a4g

4 + a3g
3 + a2g

2 + a1g + a0,

B = b7g
7 + b6g

6 + b5g
5 + b4g

4 + b3g
3 + b2g

2 + b1g + b0,

b7 = 124297024336997477790866, b6 = 43189622456246393414224,

b5 = −258642712235742814743726, b4 = −136428165027671534593750,

b3 = 213681762408969527031250, b2 = 199976876120553414562602,

b1 = −70774416610255087951747, b0 = −129089005248346771092897,

a7 = 59165301272956037525, a6 = 40996615699845889982,

a5 = 152969005301622874489, a4 = 53665185894144140125,

a3 = 148453810204496210375, a2 = 33066388703204638925,

a1 = 63819073735217372000, a0 = 2337520804186801675.

Method: I used Maple, which handles large integers easily.
1) Find remainder of

(1 + g − g2)2n−1(angn + ...+ a0)

upon division by g2n+1 − 2 (where g and all the ai’s are indeterminate). The result is a
polynomial, in g, of degree 2n with each coefficient bj a linear combination of the ai’s.

2) Solving b2n = ... = bn+1 = 0 and bn = k gives, for the right choice of k, relatively prime
integers a0, ..., an.

3) Letting A(g) =
∑
aig

i, and letting B(g) =
∑
big

i be the remainder of (1+g−g2)2n−1A(g)
upon division by g2n+1 − 2, implies

(1 + g − g2)2n−1A(g) = (g2n+1 − 2)P (g) +B(g)

for some polynomial P (g). If g2n+1 = 2, then

B(g)/A(g) = (1 + g − g2)2n−1

or, equivalently,
2n−1
√
A(g) + 2n−1

√
B(g)

2n−1
√
A(g)− 2n−1

√
B(g)

=
2 + g − g2

−g + g2
.
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Problem 7, posed by Sam Northshield
Let

f(n+ 1) =

n∑
k=0

σSF (k)σSF (n−k),

where σ = (1 + i
√

3)/2, and SF (k) is the number of terms in the Zeckendorf representation of
k. The sequence f begins:

1, 1, 2, 3, 2, 4, 3, 3, 6, 4, 6, 6, 4, 8, 6, 7, . . .

and is integer-valued. Define σ(n) = bnϕ+ 1/ϕc , where ϕ = (1 +
√

5)/2 and τ(n) =⌊
nϕ2 + ϕ

⌋
, so that these sequences are a complementary pair. Prove or disprove the following

chain of inequalities:

f(τ(n)) ≥ f(
⌊
nϕ2

⌋
) ≥ f(bnϕc) ≥ f(σ(n)) ≥ f(n) ≥ 0.

Also, what does the sequence f count?

Problem 8, posed by Larry Ericksen

Let pi =

Ji∑
j=0

cj10j be the decimal representation of the ith prime, and let ri =

Ji∑
j=0

10Ji−jcj

be the number obtained by reversing the digits. For what primes pi is ri + pi a square and
ri − pi a cube? Example: for pi = 47 and ri = 74, we have ri + pi = 112 and ri − pi = 33.

Problem 9, posed by Patrick Dynes
It is known that the sequence of Fibonacci numbers modulo q, where q ∈ Z+, repeats with

period π(q), known as the Pisano period. Given integers 0 ≤ r < q and n, let S(q, r, n) =
{Fi : i ≤ n and Fi ≡ r (mod q)}. How well can we approximate |S(q, r, n)|? Is it possible
to develop an asymptotic formula for |S(q, r, n)| that becomes more precise as q and n grow
arbitrarily large?

Problem 10, posed by Russell Hendel
Let {an,i}n≥0, 1 ≤ i ≤ m, be a collection of m linear homogeneous recursive nondecreasing

sequences with constant coefficients. Define the merged sequence as the sequence formed by
arranging in nondecreasing order the set-theoretic union of these sequences. Define the weight,

w, of a sequence {Gn}n≥0 satisfying

p∑
i=0

biGn−i = 0 by wG =

p∑
i=0

|bi| .

Problem: Under what conditions does the merged sequence have a lesser order or lesser
weight than all contributing sequences?

Example 1. For i ≥ 0, let Hi = F2i and Ji = F2i+1. The merged sequence is the Fibonacci
sequence, of order 2 and weight 2, whereas H and J each have order 2 and weight 4, since
Hn = 3Hn−1−Hn−2 and Jn = 3Jn−1−Jn−2 This example is generalizable since subsequences
whose indices form arithmetic progressions inherit recursivity [1].

Example 2. For i ≥ 0, let H2i = Fi and H2i+1 = 0, and similarly, let J2i+1 = Fi and
J2i = 0. The merged sequence, G, satisfies G2i = G2i+1 = Fi. All three sequences, H, J, and
G, satisfy the recursion Kn = Kn−2 +Kn−4 of order 4 and hence have the same weight.

Reference. [1] Russell Jay Hendel, “Factorizations of sums of F (aj − b)”, The Fibonacci
Quarterly, 45 (2007) 128-133.
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Problem 11, posed by Michael Wiener
Given a prime p > 3 and 1 < κ < p− 1, we call a sequence (an)n in Fp a Φκ-sequence if it

is periodic with period p− 1 and satisfies the linear recurrence an + an+1 = an+κ with a0 = 1.
Such a sequence is said to be a complete Φκ-sequence if in addition

{a0, a1, . . . , ap−2} = {1, . . . , p− 1}.
For instance, every primitive root b mod p generates a complete Φκ-sequence an = bn for
some (unique) κ. In 1992 Brison [1] proved that for prime.p > 3, every complete Fibonacci
sequence (κ = 2) in Fp is generated by a Fibonacci primitive root (i.e. a root of x2 − x − 1
that is also a primitive root in Fp). In 2007, Gil, Weiner and Zara [2] studied the Padovan
case (κ = 3) and related cases. In particular, they proved that when x3−x−1 has fewer than
three distinct roots in Fp, then every complete Padovan sequence is generated by a Padovan
primitive root. However, in the case of three distinct roots, they proved this result only for
certain primes and conjectured that the statement holds for every p.

1. Given a prime p > 3, prove that a Φ3-sequence is complete if and only if an = bn, where
b is a primitive root in F3 that satisfies b3 = b+ 1.

2. Prove, more generally, that if prime p > 3 and any 1 < κ < p− 1, then a Φκ-sequence is
complete if and only if an = bn, where b is a primitive root in Fp that satisfies bκ = b+ 1.

References.
[1] Brison, Owen, “Complete Fibonacci sequences in finite fields”, The Fibonacci Quarterly

30 (1992), no. 4, 295-304.
[2] J. Gil, M. Weiner, and C. Zara, “Complete Padovan sequences in finite fields”, The

Fibonacci Quarterly 45 (2007), no. 1, 64–75.

Problem 12, posed by Clark Kimberling
Let S be the set generated by these rules: 1 ∈ S, and if x ∈ S, then 2x ∈ S and 1− x ∈ S;

so that S grows in generations:

g(1) = {1}, g(2) = {0, 2}, g(3) = {−1, 4}, g(4) = {−3,−2, 8}, . . .
Prove or disprove that each generation contains at least one Fibonacci number or its negative.

Problem 13, posed by Marjorie Johnson
Prove that the Fibonacci representations of squares of even subscripted Fibonacci numbers

end with 0001; and that the odd subscripted end with 000101. (Hint, consider sums of
Fibonacci numbers having subscripts of the form 4j or 4j + 2.) More difficult and more
interesting: find all integers M such that M2 ends in 0.

Problem 14, posed by Ron Knott, solved by Sam Northshield
As an infinite Mancala game, suppose a line of pots contains pebbles, 1 in the first, 2 in the

second, and n in the nth, without end. The pebbles are taken from the leftmost non-empty
pot and added, one per pot, to the pots to the right. Prove that the number of pebbles in
pot n as it is emptied is bnϕc , where ϕ is the golden ratio, (1 +

√
5)/2. (This is a variation on

a comment by Roland Schroeder on the lower Wythoff sequence; see A000201 in the Online
Encyclopedia of Integer Sequences.)

Solution by Sam Northshield. Starting with the positive integers, repeat the following
procedure:

* Remove the first entry to create a new row.
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* If that number was n, then add 1 to each of the first n entries in the new row, obtaining

1 2 3 4 5 6 7 8 9 10 11 12 . . .
3 3 4 5 6 7 8 9 10 11 12 . . .

4 5 6 6 7 8 9 10 11 12 . . .
6 7 7 8 8 9 10 11 12 . . .

Lemma.
2n− bnϕc =

⌊
n/ϕ2

⌋
= min{j :

⌊
jϕ2
⌋
≥ n}.

Proof. The first equality is obvious from 2− ϕ = 1/ϕ2. To prove the second, note that⌊
n/ϕ2

⌋
< n/ϕ2 ⇒

⌊
n/ϕ2

⌋
ϕ2 < n⇒

⌊⌊
n/ϕ2

⌋
ϕ2
⌋
< n

and
n/ϕ2 <

⌈
n/ϕ2

⌉
⇒
⌈
n/ϕ2

⌉
ϕ2 > n⇒

⌊⌈
n/ϕ2

⌉
ϕ2
⌋
≥ n.

Theorem. Let dn denote the first term in the nth row of the array above. Then dn = bnϕc .
Proof. We see that the dj−1 ones added to the jth row contribute 1 to the value of dn if

j + dj−1 − 1 ≥ n. That is,

dn = n+ |{j ≤ n : j + dj−1 − 1 ≥ n}|
or equivalently,

dn = n+ |{j < n : j + dj−1 ≥ n}|
Since dn is strictly increasing, we arrive at the recursive formula

dn = 2n−min{j : dj + j ≥ n},
of which the solution is unique (given that d1 = 1) and so it is enough to show that bnϕc
satisfies it; i.e., that

bnϕc = 2n−min{j : bjϕc+ j ≥ n}.
Since bjϕc+ j =

⌊
jϕ2
⌋
, the lemma applies and the proof of the theorem is finished.
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