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Abstract. The binary Fibonacci sequence is the sequence of 0’s and 1’s obtained by starting
from 0 and iterating in parallel the substitution rules 0 → 01, 1 → 0 infinitely many times:
the first construction steps successively yield the binary strings 0, 01, 010, 01001, . . . (whose
lengths are 1, 2, 3, 5, ...). This sequence is in some sense one of the “simplest” non- periodic
sequences. It can also be obtained by playing billiard on a square. In this survey we describe
some “extremal” properties of the binary Fibonacci sequence and of similar sequences (the
Sturmian sequences): in particular we recall unexpected inequalities involving these sequences
and their shifted sequences.

1. Introduction

Starting from 0 and iteratively applying the substitution rules 0→ 01, 1→ 0 yields

0, 01, 010, 01001, 01001010, . . .

Note that the lengths of the successive strings of 0’s and 1’s above are 1, 2, 3, 5, 8, . . . where
the reader might recognize their favorite sequence. Also note that this sequence of strings of
0’s and 1’s gets “closer and closer” to an infinite sequence

F = 0 1 0 0 1 0 1 0 0 1 0 . . .

which is thus called the binary Fibonacci sequence.

Is F a periodic sequence? If not, how close is F to being periodic? Are their other ways to
generate this sequence?

Letting S denote the map that erases the first term of an infinite sequence, and Sk the map
that erases the first k letters of an infinite sequence one has

S0(F ) = 0 1 0 0 1 0 1 0 0 1 0 . . .
S1(F ) = 1 0 0 1 0 1 0 0 1 0 . . .
S2(F ) = 0 0 1 0 1 0 0 1 0 . . .
S3(F ) = 0 1 0 1 0 0 1 0 . . .
. . .

It is then immediate to see that S1(F ) and S2(F ) are smaller than 1F and larger than 0F for
the lexicographical order1 Is this also true for Sk(F ) for all k ≥ 1? Are their other sequences
with these properties? We will survey these questions and see how they are related to the
Sturmian sequences. We will also allude to similar but different “extremal” properties of a
non-Sturmian sequence, namely the Thue-Morse sequence.

1A binary sequence is lexicographically smaller than another binary sequence if they begin with a same
–possibly empty– prefix followed by a 0 for the first sequence and by a 1 for the second sequence.
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2. Some definitions

In this section we will give a few definitions. More details can be found in the books [9, 7, 4].

Definition 2.1. An alphabet A is a finite set. If the cardinality of A is equal to 2, in
particular if A = {0, 1}, A is called a binary alphabet. The elements of an alphabet are called
letters. A word on the alphabet A is a finite string of letters. We let A∗ denote the set of all
words on A (including the empty word ∅ with no letter). The total number of letters of a word
w in A∗ is called its length and denoted by |w|. In particular |∅| = 0.

We define on the set of words A∗ an operation, the concatenation “.” of two words, which
consists of writing the two words one after the other, e.g., 011.10 = 01110. This operation is
clearly associative. The empty word ∅ is clearly a unit. Furthermore if v and w are two words
in A∗, then |v.w| = |v|+ |w|. We have thus proved the following proposition.

Proposition 2.2. Let A be an alphabet. Then (A∗, .) is a monoid, called the free monoid
generated by A. The map w → |w| is a homomorphism from (A, .) onto (N,+) (where N is
the set of all nonnegative integers {0, 1, 2, . . .}).

As usual, having a structure (monoids) we look for the functions (homomorphisms of
monoids) that preserve the structure. In other words we look for maps such that the im-
age of the concatenation of two words is the concatenation of their images. We write a formal
definition.

Definition 2.3. Let A and B be two alphabets. A morphism g from A∗ to B∗ is a map from
A∗ to B∗ such that for any words v and w belonging to A∗, one has g(v.w) = g(v).g(w). [We
let “.” denote the concatenation both in A∗ and B∗.] A morphism g is said to be non-erasing
if for any word w ∈ A∗ such that w 6= ∅, then g(w) 6= ∅.

Remark 2.4. Of course a morphism g is completely defined by its values on the alphabet A.
Namely a word is equal to the concatenation of its letters (e.g., in {0, 1}∗ one has 011 = 0.1.1).

Example 2.5. Let A = B = {0, 1}. Define f : A → A∗ by f(0) = 01, f(1) = 0. Then f
defines a morphism A∗ → A∗: e.g., f(011) = f(0.1.1) = f(0).f(1).f(1) = 01.0.0 = 0100.

Now we want to have a notion of convergence for a sequence of words on a given alphabet.
To this effect we first introduce the set A∞ which is the set of all (infinite) sequences (an)n≥1
with values in A. Two sequences are “close” if they coincide for a “large” initial range of
indexes. A (finite) word can be considered as an infinite sequence by completing it with an
infinite “tail” of symbols all equal to a “new” letter. More formally:

Definition 2.6. Let A be an alphabet. Let � be a letter that does not belong to A. Then any
word w in A∗ is identified with the sequence w � � � · · · in (A ∪ {�})∞.The set A∞ ∪ A∗ is
identified with the subset of (A ∪ {�})∞ that consists of sequences that either do not take the
value �, or whose values are eventually (i.e., from some index on) equal to �. A distance δ is
defined on (A ∪ {�})∞ by: if X = (xn)n≥1 and Y = (yn)n≥1 ∈ (A ∪ {�})∞, then

δ(X,Y ) = (1 + inf{n ≥ 1; xn 6= yn})−1,

where, if X = Y then inf{n ≥ 1;xn 6= yn} = +∞, hence δ(X,Y ) = 0.

In the sequel we will identify A∗ with the set of infinite sequences in (A ∪ {�})∞ that are
eventually equal to �.
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Now coming back to Example 2.5, what happens when iterating f? Letting f (k) denote the
k-th iterate of f (so that f (0) is just the identity map id) and applying f (k) to 0 yields

f (0)(0) = id(0) = 0

f (1)(0) = f(0) = 01

f (2)(0) = f(f(0)) = f(01) = 010

f (3)(0) = f(f(f(0))) = f(f(01)) = f(010) = 01001
. . .

It looks like (and it can be proved) that the sequence of words f (n)(0), i.e., the sequence
of words 0, 01, 010, 01001, . . . converges (for the distance defined above) to the infinite word
F = 01001010010 . . .. Furthermore, extending f to infinite words “by continuity” (i.e.,
f(a0a1a2 . . .) = f(a0)f(a1)f(a2) . . .) one sees that the infinite word F is a fixed point of
(the extended morphism) f , namely f(F ) = F . This is an example of a general situation that
is described in the following theorem.

Theorem 2.7. Let A be an alphabet. Let g be a nonerasing morphism A∗ → A∗, such
that there exists a letter a ∈ A with g(a) = az where z is a non-empty word in A∗. Then

g(k)(a) converges to an infinite sequence which is a fixed point of the extension by continuity
of morphism g. This infinite sequence is called the iterated fixed point of g beginning with a.

3. The binary Fibonacci sequence

The sequence in Example 2.5 above is obtained as the limit of the sequence of words
0, 01, 010, 01001, . . ., whose lengths are 1, 2, 3, 5, . . .. This justifies the following definition.

Definition 3.1. Let A = {0, 1}. Let f be the morphism defined on {0, 1} by f(0) = 01,
f(1) = 0. The binary Fibonacci sequence F is the iterative fixed point of the morphism f
beginning with 0. The first terms of F are F = 01001010010 . . .

The binary Fibonacci sequence can also be defined as follows (see, e.g., [9, 4]).

Proposition 3.2. Let F be the binary Fibonacci sequence. It has the following properties.

(i) F is the limit of the sequence of words Un defined by U0 = 0, U1 = 01, and for every
n ≥ 0, Un+2 = Un+1Un.

(ii) Let ϕ = (1 +
√

5)/2 be the golden ratio, so that 1/ϕ2 = 0.381966014.... For n ≥ 1,
let xn = bn/ϕ2c, where byc is the integer part of the real number y. This yields the
sequence 0, 0, 1, 1, 1, 2, 2, 3, . . .. The first difference of this sequence is equal to F .

Proof. (partial) Here we only prove (i). It suffices to prove that Un+1 = f (n)(0) = f (n)(U0).
Thus it suffices to prove that for all n one has Un+1 = f(Un). This is done by induction on n.
For n = 0: U1 = 01 = f(0) = f(U0). For n = 1: U2 = U1U0 = 010 = f(01) = f(U1). Suppose
that Uk+1 = f(Uk) for all k ≤ n for some n ≥ 1. Then Un+2 = Un+1Un = f(Un)f(Un−1) by
the induction hypothesis. But f(Un)f(Un−1) = f(UnUn−1) = f(Un+1) and we are done. 2

Remark 3.3. The first property given above for the binary Fibonacci sequence F is one more
reason to call it Fibonacci.

Remark 3.4. The property given in Proposition 3.2 (ii) can be used to construct the sequence
F as follows: the subset N2 of the lattice Z2 generates a square grid; take the half straight line
of slope 1/ϕ starting from the origin and look at the places where it crosses the individual grid
lines; mark a 0 if the grid line is vertical and a 1 if the grid line is horizontal; the sequence of
0’s and 1’s that is obtained is equal to F . Furthermore by “folding” this construction onto the
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unit square, one sees that F can be generated by playing (perfect) billiard on a square, starting
from the bottom left corner with a slope equal to 1/ϕ.

Now we state two lemmas that will prove useful in the sequel.

Lemma 3.5. The binary Fibonacci sequence is not eventually periodic.

Proof. If a sequence (vn)n≥1 is eventually periodic, then for any value a taken by the sequence,
the frequency of this value (i.e., the limit when N goes to infinity of ]{n ≤ N, vn = a}/N)
exists and is rational. To prove that F is not eventually periodic, it thus suffices to use the
definition of F given in Proposition 3.2 (i) and to prove that the number of 1’s occurring in
the word Un divided by the length of Un tends to an irrational value when n goes to infinity.
Define F0 = 0, F1 = 1 and, for n ≥ 0, Fn+2 = Fn+1+Fn (the Fn’s are the Fibonacci numbers).
It is easily proved by induction that the number of 1’s occurring in Un is equal to Fn, while
the length of Un is equal to Fn+2. Since Fn/Fn+2 tends to 1/ϕ2 when n goes to infinity, we
are done. 2

The proof of the next lemma is classical. Actually the statement – but not the proof – holds
for all “Sturmian” sequences (see Definition 4.1).

Lemma 3.6. If z is a block of consecutive letters occurring in F , then the blocks 0z0 and 1z1
cannot both occur in F .

Proof. The lemma is proved by induction on the length of z. For |z| = 0 and |z| = 1 the
statement is true since it is clear from the definition of F that the block 11 does not occur in
F ; neither do the blocks 000 and 111. Now let z be a word of length ≥ 2 occurring in F such
that the statement of the lemma is true for all words of length < |z| occurring in F , and such
that 0z0 and 1z1 occur in F . Since 1z1 occurs in F , the word z (of length ≥ 2) must begin and
end with a 0 (the block 11 does not occur in F ). Let z = 0x0, where x is possibly the empty
word. Since 0z0 = 00x00 occurs in F , we have that x is not empty (0000 does not occur in
F ); furthermore x is not reduced to a single letter (if x = 0, then 00x00 = 00000 which cannot
occur in F ; if x = 1, then 1z1 = 10101 which cannot occur in F , since it would be the image
by f of 000 which does not occur in F = f(F )). Thus x, which must begin and end with a 1, is
equal to 1y1 for some word y. Now since 0x = 01y1 occurs in F = f(F ) = f(0)f(1)f(0)f(0) . . .
with f(0) = 01 and f(1) = 0, the only way this can happen is that there exists some block
w in F such that 0x = 01y1 = f(w). Since 0z0 = 00x00 is necessarily followed in F by
a 1, the word 0z01 = 00x001 occurs in F . But 00x001 = 0f(w)001; thus we must have
00x001 = 0f(w)001 = f(1w10). In particular 1w1 occurs in F . Since 1z1 = 10x01 occurs in
F and must be preceded by a 0, and since 010x01 = f(0w0), we finally have that both 0w0
and 1w1 occur in F. But |w| ≤ |f(w)| = |0x| < |z|, contradicting the induction hypothesis. 2

We will see that, in some precise sense, the binary Fibonacci sequence (which is not periodic,
as we have seen) is as close as possible to being periodic.

Definition 3.7. The block-complexity (pv(k))k≥1 of a sequence (vn)n≥1 on an alphabet A is
defined by: pv(k) is the number of distinct blocks of consecutive letters of length k occurring
in the sequence (vn)n≥1.

Remark 3.8. For the block-complexity of (vn)n≥1 we clearly have: 1 ≤ pv(k) ≤ (]A)k for all
k ≥ 1. A constant sequence has p(k) = 1 for all k, while any “random” sequence is expected
to have all possible words on A occurring, thus to have p(k) = (]A)k. This gives a reason for
calling pv the (block-)complexity of the sequence v. The following classical proposition shows
that periodic sequences are the sequences with the least possible complexity.
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Proposition 3.9 (Morse-Hedlund [10]). Let (vn)n≥1 be a sequence on an alphabet A such that
]A ≥ 2. Let (pv(k))k≥1 be its block-complexity. Then the following properties are equivalent.

(i) The sequence (vn)n≥1 is eventually periodic (i.e., periodic from some index on);
(ii) (pv(k))k≥1 is eventually constant;

(iii) (pv(k))k≥1 is bounded;
(iv) There exists an integer k0 ≥ 1 such that pv(k0) ≤ k0;
(v) There exists a non-negative integer m such that pv(m) = pv(m+ 1).

Proof. Since the block-complexity pv is integer-valued and non-decreasing, it is either even-
tually constant or it goes to infinity: this easily implies that (ii) and (iii) are equivalent
and that they imply (iv). Also if pv is increasing, one has for any k ≥ 1 the inequality
pv(k + 1) > pv(k), hence pv(k + 1) ≥ 1 + pv(k); this implies by induction that for any k ≥ 1
one has pv(k) ≥ k − 1 + pv(1) ≥ k + 1. Thus, by contraposition, (iv) implies (v). Since the
block-complexity of an eventually periodic sequence is clearly bounded, it remains to prove
that (v) implies that the sequence v is eventually periodic.

Now we start from a sequence (vn)n≥1 such that its complexity pv has the property: there
exists an integer m ≥ 1 such that pv(m + 1) = pv(m). This implies that any block of length
m occurring in the sequence (vn)n≥1 can be extended on the right to a block of length m+ 1
occurring in the sequence in exactly one way. But this block of length m+ 1 can be extended
to the right in only one way (think of its suffix of length m). Iterating this remark proves that
given a word of length m occurring in the sequence, the sequence of letters that follow it is
uniquely determined. In other words, given a block w of length m in the sequence, there exists
a sequence r(w) depending only on w such that the initial sequence ends with wr(w). Looking
at all the blocks of length m occurring in the initial sequence, there must be two of them
occurring at two distinct places but being identical (recall that A is finite), say blocks w′ and
w′′, but with w′ = w′′. They must be followed by the same infinite sequence r(w′) = r(w′′):
hence the initial sequence is eventually periodic. 2

This proposition clearly implies the following corollary.

Corollary 3.10. Let (vn)n≥1 be a sequence on the alphabet A that is not eventually periodic.
Let pv be its block-complexity. Then, for all k ≥ 1, one has pv(k) ≥ k + 1.

Thus, in the sense of block-complexity, a non-eventually periodic sequence that would satisfy
pv(k) = k + 1 for all k ≥ 1 would be as close to eventually periodic as possible. The binary
Fibonacci sequence has this property.

Proposition 3.11. Let F be the binary Fibonacci sequence. Let pF be its block-complexity.
Then, for all k ≥ 1 one has pF (k) = k + 1.

Proof. Since F is not eventually periodic from Lemma 3.5 (more precisely from the proof of
(iv) ⇒ (ii) in Lemma 3.5), we have pF (k) ≥ k + 1 for all k ≥ 1 from Corollary 3.10.

To prove that pF (k) ≤ k + 1 for all k ≥ 1, it suffices to prove that for all k ≥ 1 one has
pF (k+ 1)− pF (k) ≤ 1. It thus suffices to prove that there is at most one block of each length
occurring in F that can be extended (to the right) in two ways to a block occurring in F .
In other words we would like to prove that for any length `, there is at most one word w of
length ` occurring in F such that both words w0 and w1 occur in F . Suppose that both w′

and w′′ have length ` and that w′0, w′1, w′′0 and w′′1 occur in F . If w′ 6= w′′, let y be their
longest common suffix. Then there are letters preceding y in w′ and in w′′, and they must be
distinct. Say w′ = x′0y and w′′ = x′′1y, where x′ and x′′ are possibly empty words. Thus the
words 0y0, 0y1, 1y0, and 1y1 occur in F which is impossible from Lemma 3.6. 2
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4. Sturmian sequences

A natural question is whether the properties of the binary Fibonacci sequence are specific,
or whether they are shared by other sequences. We begin with the following definition.

Definition 4.1. A sequence on an alphabet A is called a Sturmian sequence if its block-
complexity p satisfies: p(k) = k + 1 for all k ≥ 1.

Example 4.2. The binary Fibonacci sequence is a Sturmian sequence defined on the alphabet
{0, 1}.

Remark 4.3. For a Sturmian sequence one has p(1) = 2, thus a Sturmian sequence is defined
on an alphabet of cardinality 2.

The following theorem is due to Morse and Hedlund and to Coven and Hedlund.

Theorem 4.4. [10, 5] A sequence (zn)n≥1 defined on A = {0, 1} is Sturmian if and only if
there exists an irrational number α ∈ (0, 1) and a real number β such that

either zn = b(n+ 1)α+ βc − bnα+ βc for all n ≥ 0,
or zn = d(n+ 1)α+ βe − dnα+ βe for all n ≥ 0,

where byc is the largest integer less than or equal to y and dye is the least integer larger than
or equal to y.

We formulate one more definition.

Definition 4.5. If (zn)n≥1 is a Sturmian sequence, let α and β be as in Theorem 4.4 above.
The irrational α is called the slope of (zn)n≥1 while β is called the intercept of (zn)n≥1. If
β = 0 the sequence (zn)n≥1 is called a characteristic Sturmian sequence.

Example 4.6. The Fibonacci sequence is a characteristic Sturmian sequence. (By Proposi-
tion 3.2 (ii), the nth term of the Fibonacci sequence is b(n+ 1)/ϕ2c − bn/ϕ2c.)

Remark 4.7. There is (at least) one property of the binary Fibonacci sequence that most
Sturmian or characteristic Sturmian sequences do not have, namely that F is an iterative fixed
point of a binary morphism: the iterative fixed points of binary morphisms form a countable
set, while the set of (characteristic) Sturmian sequences is not countable (consider the slopes).

This section shows that Sturmian sequences share in particular two properties of the binary
Fibonacci sequence, namely the one described in Theorem 4.4 and the fact (Definition 4.1)
that they are as close as possible to periodic sequences in the sense of block complexity. The
next section will give another general result involving Sturmian sequences and characteristic
Sturmian sequences.

5. Inequalities involving Sturmian and characteristic Sturmian sequences

We begin with a definition.

Definition 5.1. Let X = (xn)n≥1 and Y = (yn)n≥1 be two sequences with values in {0, 1}.
Then X is said to be smaller in the lexicographical order than Y if there exists n0 ≥ 1 such
that xn = yn for all n ≤ n0 and xn0+1 = 0 while yn0+1 = 1. We note X < Y .

Remark 5.2. It is not difficult to see that the relation X ≤ Y if either X = Y or X < Y (in
the lexicographical order), is a total order on the binary sequences.
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Recall from the introduction that the kth shift Sk of a sequence (xn)n≥1 is the sequence
(xn+k)n≥1 and that the first shifted sequences of the binary Fibonacci sequence are respectively

S0(F ) = 0 1 0 0 1 0 1 0 0 1 0 . . .
S1(F ) = 1 0 0 1 0 1 0 0 1 0 . . .
S2(F ) = 0 0 1 0 1 0 0 1 0 . . .
S3(F ) = 0 1 0 1 0 0 1 0 . . .
. . .

It is immediate that 0F ≤ Sj(F ) ≤ 1F for j = 1, 2, 3. This property is actually true for all j,
and even more: it is true for all characteristic sequences. If U = (un)n≥1 is a binary sequence
and a belongs to {0, 1}, we let aU denote the sequence U ′ = (u′n)n≥1 defined by u′1 = a and
u′n = un−1 for all n ≥ 2. Then we have the following two theorems.

Theorem 5.3. A non-eventually periodic sequence U = (un)n≥1 on {0, 1} is a characteristic
Sturmian sequence if and only if, for all k ≥ 0,

0U < Sk(U) < 1U.

Furthermore, we have 0U = inf{Sk(U), k ≥ 0} and 1U = sup{Sk(U), k ≥ 0}.

Theorem 5.4. A non-eventually periodic sequence V = (vn)n≥1 on {0, 1} is Sturmian if and
only if there exists a sequence U = (un)n≥1 on {0, 1} such that 0U ≤ Sk(V ) ≤ 1U for all
k ≥ 0. Moreover, U is the unique characteristic Sturmian sequence with the same slope as V ,
and we have 0U = inf{Sk(V ), k ≥ 0} and 1U = sup{Sk(V ), k ≥ 0}.

Remark 5.5. Both theorems above were totally or partially discovered several times (see com-
ments and references in [3, Section 5]).

The two theorems above characterize Sturmian and characteristic Sturmian sequences. One
can ask whether other sequences or families of sequences satisfy conditions of the same kind.
We will see in the next section that this is indeed the case.

6. Other extremal properties of infinite sequences

In a 1983 paper Cosnard and the author, studying the iteration of unimodal functions from
the unit interval to itself, introduced the set Γ defined by:

Γ = {A ∈ {0, 1}∞, ∀k ≥ 0, A ≤ Sk(A) ≤ A}

where A is the sequence obtained by exchanging 0’s and 1’s in A (see [2], also see [1]). They
proved several properties of the set Γ, in particular a kind of fractal property of this set. It hap-
pens that the least non-periodic element in this set is the sequence S1(M) = 11010011001 . . .,
where M is the famous Thue-Morse sequence which can be defined as the iterative fixed point
of the morphism 0 → 01, 1 → 10. Other sequences similar to S1(M) and called q-mirror
sequences play a specific rôle in the set Γ.

Curiously enough, a set Γ̃ almost identical to Γ was studied independently in the paper [6]
by Erdős, Joó and Komornik in 1990. This set is defined by:

Γ̃ = {A ∈ {0, 1}∞, ∀k ≥ 0, A < Sk(A) < A}.

It permits the characterization of the real numbers β ∈ (1, 2) which are univoque, i.e., such
that there is only one expansion of 1 as 1 =

∑
k≥1 akβ

−k with ak ∈ {0, 1}.
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Pairs of sequences satisfying similar inequalities occur, e.g., in a 1990 paper by Hubbard and
Sparrow about Lorenz maps (see [8]). The authors consider allowed pairs (V,W ) of distinct
binary sequences in {0, 1}ω: they satisfy

W ≤ Sk(W ) < V and W < Sk(V ) ≤ V for all k ≥ 0.

Note that characteristic Sturmian sequences Z essentially correspond to W = 0Z and V = 1Z,

while the sequences Z in Γ and Γ̃ essentially corespond to V = Z and W = Z.
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