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Abstract. While many examples of Fibonacci numbers are found in phenotypic structures
of plants and animals, the dynamic processes that generate these structures have not been
fully elucidated. This raises the question: What biologic rules and mathematical laws that
control the growth and renewal of tissues in multi-cellular organisms give rise to these patterns
of Fibonacci numbers? In nature the growth and self-renewal of cell populations leads to gen-
eration of hierarchical patterns in tissues that resemble the pattern of population growth in
rabbits, which is explained by the classic Fibonacci sequence. Consequently, we conjectured
a similar process exists at the cellular scale that explains tissue renewal. Accordingly, we cre-
ated a model (cell division type) for tissue development based on the biology of cell division
that builds upon the cell maturation concept posed in the Spears and Bicknell-Johnson model
(“mating”-like design) for asymmetric cell division. In our model cells divide asymmetrically
to generate a mature and an immature cell. Model output on the number of cells generated
over time fits specific Fibonacci p-number sequences depending on the maturation time. A
computer code was created to display model output as branching tree diagrams as a function
of time. These plots and tables of model output illustrate that specific patterns and ratios
of immature to mature cells emerge over time based on the cell maturation period. Conclu-
sion: Simple mathematical laws involving temporal and spatial rules for cell division begin to
explain how Fibonacci numbers appear in patterns of growth in nature.

1. Introduction

Many examples of Fibonacci numbers are found in phenotypic structures of plants and
animals. Indeed, Fibonacci numbers often appear in number of flower petals, spirals on a
sunflower or nautilus shell, starfish, and fractions that appear in phyllotaxis [4, 18, 10]. In art,
the aesthetic proportions of the human body as suggested by Leonardo da Vinci’s “Vitruvian
Man” are described by ratios of Fibonacci numbers (termed the “golden ratio”) [5]. At lower
levels of complexity, i.e. the intracellular and cellular scales, Fibonacci numbers have also
been reported. For example, the organization of nucleic acid bases in the DNA sequence
has an order (called the DNA SUPRA code) that follows Fibonacci numbering [6, 7]. The
order of replication of DNA in cells also appears to follow the Fibonacci series [9]. Moreover,
human epithelial cells that were grown in vitro showed a clonal growth pattern that followed
the Fibonacci sequence [19, 20]. While these patterns of Fibonacci numbers appear at the
molecular and cellular scales, it does not explain how Fibonacci numbers appear in patterns
of growth at the organism scale.

We believed that the key to solving this problem was to investigate relevant dynamic pro-
cesses that occur at the cellular scale because tissues are fluid, self-renewing, not stationary,
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cellular systems. For example, in a seminal study, Spears and Bicknell-Johnson [15, 16] mod-
eled the dynamics of cell division as an asymmetric process and discovered that the cell popu-
lation expansion followed the Fibonacci numbers. In their study, asymmetric cell division was
designed as a process that produces two progeny cells with different temporal (not pheno-
typic) properties. Based on this mechanism, their model output simulated the dynamic growth
of cell populations and generation of hierarchical patterns found in tissues. Our current study
builds upon this asymmetric cell division mechanism to understand the emergent-type laws
that control the growth and renewal of tissues which give rise to these patterns of Fibonacci
numbers in nature.

2. Model Design

The dynamics of cell division were modeled as an asymmetric process based on the Spears
and Bicknell-Johnson Model [15, 16]. In modeling asymmetric cell division, two progeny cells
are produced with different temporal characteristics: one cell (mature) continues to undergo
division every cycle and the other cell (immature) has a lag time for maturation before it
undergoes division. Our current study builds upon this asymmetric mechanism by incorporat-
ing a design (cell division) for cell maturation (Figure 1) that fits the biology of cell division
more closely than the “classic” Spears and Bicknell-Johnson (“mating”-like) design. In the
“mating”-like design, the immature cell first becomes mature and then it divides (like a ges-
tation period), but in our cell division the immature cell becomes mature upon reaching its
first division (no gestation period). The cell maturation time is defined by the number of cell
cycles between its initial production and its first division to produce a new immature cell.
Mature cells continue to divide until they become wholly mature and no longer divide, and
subsequently die (cell lifespan). Our study builds on this asymmetric cell division mechanism
to understand the emergent-type laws that govern tissue renewal.

3. An Agent-based Code for Asymmetric Cell Division

An agent-based code was also created for our model with the “agents” being the cells
themselves, with cells having the counting properties of age and generation (the Netlogo code
is available upon request). Based on the asymmetric division process, cells are distinguished
as immature or mature. The age of a cell is defined by the number of time steps since its
initial production. A cell divides if and only if it is a mature cell. The generation of a cell is
the number of divisions removed from the original clonogenic cell (zeroth generation cell).

Three main properties define the cell’s behavioral dynamics: maturation-cycle (or age at
maturation, the c value), whole-maturation time (nwm or age at whole-maturation), and lifes-
pan (L or age at death). In other words, these properties (c, nwm , and L) specify the age at
which cells change state: at age zero, a cell is immature; at age c, a cell becomes mature; at
age nwm , a cell becomes wholly-mature; at age L, the cell reaches the end of its life cycle and
dies. The number of divisions undergone by any given cell can be determined by the following
relationship: #divisions = nwm − c . For some model runs c and nwm are programmed to
decrease over time as a function of cell generation whereby c = c0 − k , where k = generation,
and nwm = nwm,0−k (c0 and nwm,0 are initial constant values). Together, these intrinsic prop-
erties control the emergent dynamical behavior of a cell agent whereby generation, c , nwm ,
and L remain constant during the lifetime of a cell, while age is continually incremented.

An initial objective was to define conditions that generate a steady-state structure. Steady-
state is deemed to be a pattern which has a long-term cell population that is constant up to
some small cyclic variation. If the c and nwm values are controlled, then the overall growth rate
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of the structure can be adjusted such that every mature cell under a steady-state condition
only produces, on average, a single immature cell. In the code, the position of all cells is
defined by their place within an implicit tree data structure that is rooted by the clonogenic
cell’s position. The c value of the clonogenic cell defines the pattern of the entire structure.
The output was plotted as lineage trees to illustrate the numerical evolution of the model. The
trees track all divisions that occur at each time step. Beginning with time zero and a single
stem cell, each successive row of the tree indicates a new time step. Cells that remain alive
between time steps are propagated downward to the next row of the tree and connected by
a visual link. If a cell divides, then it is connected to both of its resulting halves in the next
row. Output was also plotted as very large lineage trees at low resolution. In all lineage trees,
the distance between horizontally adjacent nodes are equal. This indicates that the geometric
width of the tree at any given height corresponds to the cell population size at that time.

4. Results

Model output based on cell division as an asymmetric process showing that cell population
expansion based on maturation delay (c value) follows the Fibonacci numbers (Table 1 &
Figure 1).

Fn = Fn−1 + Fn−c (4.1)

A binomial equation for cell numbers in different generations where n = time, c = maturation
delay, k = generation, and d = maturational age is given by Spears and Bicknell-Johnson
Model [15, 16].

Gn =
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where the floor function is defined as

bxc = largest integer ≤ x .

Note that
(n−(c−1)(k−1)

k

)
is the number of cells in generation k at time n , while

(n−k(c−1)−d+1
k

)
is the number of cells in maturation age d (1 ≤ d ≤ c) and generation k at time n .

Cell numbers as a function of generation (Tables 2 & 3) are obtained from the formulas above.

The equation for the ratio of mature and immature cells based on c value (Tables 4 & 5) is

M

I
=

(
I

M + I

)c−1
=

(
1

M/I + 1

)c−1
. (4.3)

If we let x = M/I be the ratio of mature to immature cells, then x is a positive root of the
polynomial equation (see Table 5)

x(x + 1)c−1 − 1 = 0 .

Our computer code displays model output as branching tree diagrams as a function of time.
Figure 2 shows the tree diagram generated from output of our agent-based computer code
model for maturation time c = 6. Figure 3 shows the tree diagram generated from output
involving maturation time c = 6 and when it is programmed to decrease over time as a function
of cell generation (nwm = nwm,0−k) whereby L = 50 and nwm,0 = 9. These plots and tables of
model output illustrate that specific patterns and ratios of immature to mature cells emerge
over time based on the cell maturation period.
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5. Discussion

The sequences of number of cells generated by asymmetric cell division over time in our
model are similar to known sequences in discrete mathematics. This is illustrated by sequences
for c = 1 to c = 6 given in Table 1 that are related to recursive sequences previously described
in both number theory and geometry [12, 11]. For example, the sequence for c = 1 consists of
powers of 2, for c = 2 the Fibonacci numbers, and for c = 3 the Narayana’s cows sequence.
The limiting ratios of successive terms of these sequences are also related to previously re-
ported constants. For example, for c = 2 the limiting ratio is the golden ratio, for c = 5 the
limiting ratio corresponds to that for the Padovan sequence or Perrin sequence as well as the
plastic constant. The limiting ratios for c = 3 to c = 5 have also been reported as Pisot-
Vijayaraghavan numbers. In geometric terms, the limiting ratios of these sequences have also
been reported for the Fibonacci p-numbers and are expressed as the division of line segments
which has been termed “The Golden p-sections” [17]. While these sequences and their limiting
ratios are well known in mathematics, analysis of their rate of growth to determine why Fi-
bonacci numbers appear in patterns of growth in nature has not been extensively investigated.

Based on our model output from asymmetric cell division we begin to see how these recursive
sequences might be related to the biologic rules and mathematical laws that control the growth
and renewal of tissues in multi-cellular organisms that give rise to these patterns of Fibonacci
numbers. Based on this asymmetric mechanism, our model output simulates the dynamic
growth of cell populations and generation of hierarchical patterns found in tissues which are
fluid, self-renewing, not stationary, cellular systems. Modeling asymmetric cell division also
shows patterns of cell sub-populations based on cells having different temporal (not pheno-
typic) properties. Indeed, the plots and tables of model output illustrate that specific ratios of
immature to mature cells emerge over time based on the cell maturation period. Specifically,
the proportion of immature cells decreases as the maturation delay (c value) decreases. At
a c value of one, the immature and mature cells would have identical kinetic properties and
both would divide every cycle. Overall, our model suggests that simple mathematical laws
involving temporal and spatial rules for cell division provide an explanation for how Fibonacci
numbers appear in patterns of growth in nature.

The findings from our asymmetric cell division modeling likely has significance to stem cells
in normal and cancer tissues. Stem cells are typically undifferentiated, slowly proliferating
cells that reside in the stem cell niche in a tissue. Stem cells are responsible for production
of the various lineages of differentiated cells and for tissue renewal. In this process, stem
cells produce intermediate progenitor cells, termed transit amplifying (TA) cells, which are
rapidly proliferating cells that differentiate into various specialized cell types. Since stem cells
are the ones responsible for continuous tissue renewal, the population of stem cells must be
maintained. But how stem cells maintain their numbers has not been fully clarified.

Previous studies have been done to understand the mechanisms that might regulate the
proportion of stem cells in tissues. Two model mechanisms (deterministic and stochastic)
have been proposed [8] as discussed below.

The deterministic model is based on asymmetric stem cell division. In this mechanism, stem
cells are immortal and reside in the stem cell niche of a tissue. During cell division, each stem
cell produces exactly one stem cell and one TA cell. The daughter stem cell continues to stay
in the niche and the TA daughter cell migrates from the niche and continues to proliferate
which leads to ongoing renewal of the tissue.
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The stochastic model proposes that the niche contains several stem cells and each stem
cell division produces two, one, or zero stem cells (or zero, one, or two TA cells, respectively).
Because, over time, this leads to “drift” in number of descendants from each stem cell lineage, a
single common ancestral stem cell will eventually become established from which all stem cells
are descended. Based on the stochastic model, the likelihood that this stem cell population
will persist depends on the probability that the production of either two stem cells, or zero
stem cells, is equal.

In the “mating”-like design in the Spears and Bicknell-Johnson model [15, 16], stem cells are
considered to be the replicating cells because these cells give birth to a new cell. This is likely
due to the “mating”-like design whereby reproduction occurs after maturation (i.e. conception
followed by gestation followed by reproduction). However, in biology stem cells are known
to be undifferentiated and slowly proliferating cells rather than mature, rapidly dividing cells
[2, 1]. In our cell division design, cell division occurs when immature cells reach maturity. If
immature cells are considered to be stem cells, then mature replicating cells would be non-stem
cells. In this case, cells would also have different degrees of stemness based on the c value and
the cell’s stemness would decrease as the cell undergoes maturation. In this view, the rate
of maturation would govern the proportion of stem cells or the degree of stemness in the cell
population of a tissue.

6. Conclusion

Simple mathematical rules involving temporal and spatial rules for cell division, not just
geometrical features, begin to explain how Fibonacci sequences appear in complex patterns of
growth in nature such as tissue histology. These rules may help understanding how normal
tissue renewal is disrupted. Therefore, diseases of aberrant tissue renewal such as cancer
[3, 14, 13] can be better understood.
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Tables

Time c = 1 c = 2 c = 3 c = 4 c = 5 c = 6
0 1 1 1 1 1 1
1 2 2 2 2 2 2
2 4 3 3 3 3 3
3 8 5 4 4 4 4
4 16 8 6 5 5 5
5 32 13 9 7 6 6
6 64 21 13 10 8 7
7 128 34 19 14 11 9
8 256 55 28 19 15 12
9 512 89 41 26 20 16
10 1024 144 60 36 26 21
11 2048 233 88 50 34 27
12 4096 377 129 69 45 34
13 8192 610 189 95 60 43
14 16384 987 277 131 80 55
15 32768 1597 406 181 106 71
16 65536 2584 595 250 140 92
17 131072 4181 872 345 185 119
18 262144 6765 1278 476 245 153
19 524288 10946 1873 657 325 196
20 1048576 17711 2745 907 431 251

Table 1. Number of cells as a function of maturation delay c .

Online Encyclopedia of Integer
Sequences (OEIS) numbers

c = 1 A000079
c = 2 A000045
c = 3 A000930
c = 4 A003269
c = 5 A003520
c = 6 A005708

Table 2. *

The insert above shows the Online Encyclopedia of Integer Sequences (OEIS) numbers that
correspond to the sequences generated by our model based on asymmetric cell division in

Table 1. Note that in Table 1 the maturation period for the clonogenic cell is not accounted
for so that the first cell division starts at n = 1 in each case.
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Generation
Time 0 1 2 3 4 5 6 7 8 9 10 Total

0 1 1
1 1 1 2
2 1 2 3
3 1 3 1 5
4 1 4 3 8
5 1 5 6 1 13
6 1 6 10 4 21
7 1 7 15 10 1 34
8 1 8 21 20 5 55
9 1 9 28 35 15 1 89
10 1 10 36 56 35 6 144
11 1 11 45 84 70 21 1 233
12 1 12 55 120 126 56 7 377
13 1 13 66 165 210 126 28 1 610
14 1 14 78 220 330 252 84 8 987
15 1 15 91 286 495 462 210 36 1 1597
16 1 16 105 364 715 792 462 120 9 2584
17 1 17 120 455 1001 1287 924 330 45 1 4181
18 1 18 136 560 1365 2002 1716 792 165 10 6765
19 1 19 153 680 1820 3003 3003 1716 495 55 1 10946
20 1 20 171 816 2380 4368 5005 3432 1287 220 11 17711

Table 3. Number of cells per generation (c = 2).
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Generation
Time 0 1 2 3 4 5 6 7 8 9 10 Total

0 1 1
1 1 1 2
2 1 2 3
3 1 3 4
4 1 4 1 6
5 1 5 3 9
6 1 6 6 13
7 1 7 10 1 19
8 1 8 15 4 28
9 1 9 21 10 41
10 1 10 28 20 1 60
11 1 11 36 35 5 88
12 1 12 45 56 15 129
13 1 13 55 84 35 1 189
14 1 14 66 120 70 6 277
15 1 15 78 165 126 21 406
16 1 16 91 220 210 56 1 595
17 1 17 105 286 330 126 7 872
18 1 18 120 364 495 252 28 1278
19 1 19 136 455 715 462 84 1 1873
20 1 20 153 560 1001 792 210 8 2745
21 1 21 171 680 1365 1287 462 36 4023
22 1 22 190 816 1820 2002 924 120 1 5896
23 1 23 210 969 2380 3003 1716 330 9 8641
24 1 24 231 1140 3060 4368 3003 792 45 12664
25 1 25 253 1330 3876 6188 5005 1716 165 1 18560
26 1 26 276 1540 4845 8568 8008 3432 495 10 27201
27 1 27 300 1771 5985 11628 12376 6435 1287 55 39865
28 1 28 325 2024 7315 15504 18564 11440 3003 220 1 58425

Table 4. Number of cells per generation (c = 3).
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Time Mature Cells Immature Cells Total
0 1 0 1
1 1 1 2
2 1 2 3
3 1 3 4
4 1 4 5
5 1 5 6
6 1 6 7
7 2 7 9
8 3 9 12
9 4 12 16
10 5 16 21
11 6 21 27
12 7 27 34
13 9 34 43
14 12 43 55
15 16 55 71
16 21 71 92
17 27 92 119
18 34 119 153
19 43 153 196
20 55 196 251

Table 5. Number of Mature & Immature cells (c = 6).

c value M/I Polynomial equation
1 1
2 0.618034 x2 + x− 1 = 0
3 0.465571 x3 + 2x2 + x− 1 = 0
4 0.380278 x4 + 3x3 + 3x2 + x− 1 = 0
5 0.324718 x5 + 4x4 + 6x3 + 4x2 + x− 1 = 0
6 0.285199 x6 + 5x5 + 10x4 + 10x3 + 5x2 + x− 1 = 0

Table 6. Ratio of Mature to Immature cells as a function of maturation delay c .
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Figure Legends

Figure 1: Cell based model for asymmetric cell division where I = immature cell, M = ma-
ture cell, c = maturation delay.

Figure 2: Tree diagram from output of Agent-based Computer Code Model. Maturation
Time c = 6, White = Clonogenic Cell, Red = Immature Cell, Blue = Mature Cell,
Green = Wholly Mature Cell.

Figure 3: Tree diagram from output of Agent-based Computer Code Model. Maturation
Time c = 6, nwm = nwm,0 − k , L = 50, where nwm,0 = 9, White = Clonogenic Cell,
Red = Immature Cell, Blue = Mature Cell, Green = Wholly Mature Cell.
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Figure 1. Cell based model for asymmetric cell division where I = immature
cell, M = mature cell, c = maturation delay.
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Figure 2. Tree diagram from output of Agent-based Computer Code Model.
Maturation Time c = 6, White = Clonogenic Cell, Red = Immature Cell, Blue
= Mature Cell, Green = Wholly Mature Cell.

	

	

Figure 3. Tree diagram from output of Agent-based Computer Code Model.
Maturation Time c = 6, nwm = nwm,0 − k , L = 50, where nwm,0 = 9, White =
Clonogenic Cell, Red = Immature Cell, Blue = Mature Cell, Green = Wholly
Mature Cell.
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