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Abstract. Some years ago while investigating generalized Zeckendorf representations, i.e.
representations of integers as binary sums of kth order Fibonacci numbers, we found that the
fraction of 0’s in the representation was a monotone increasing function of the number of bits
used. It was relatively easy to show that this behavior was to be expected asymptotically, but
was there an easy way to show that this fraction was always increasing? Specifically, could
one find a K ( presumably bigger than the order k ) so that if the fraction was increasing for
K consecutive steps, then it would always be increasing? Here, we introduce the SP (sorta
positive) polynomials. We show that if the characteristic polynomial for a difference equation
is a factor of an SP polynomial of degree K, then if the ratios of any two solutions to the
equation are K in row increasing, then the ratios are always increasing. For the kth order
Fibonacci sequences K = k + 1. For the fraction of 0’s in the Zeckendorf representation, the
characteristic polynomial is the square of a Fibonacci characteristic polynomial (i.e. degree
= 2k ) and we show that K = 2k + 2.

1. Introduction

According to an old joke, the “rule of three” means that “What I tell you 3 times is true”,
with the example that “all odd numbers are prime” because “3 is prime”, “5 is prime”, and
“7 is prime”. (The inconvenient fact that “9 is not prime” can be ascribed to experimental
error.)

On the other hand, as Bill Webb pointed out at this conference, many properties of Fibonacci
numbers and related sequences can be proved by obvious inductions because the sequences
obey simple difference equations. To prove that a sequence has a property, we can check that
the property holds for the first K elements, where K is the order of the difference equation,
and show that the difference equation implies that the property holds for the next element of
the sequence.

Of course, the difficulty is finding the “right” difference equation which, in contrast to the
joke, may have order K much greater than 3.

Our original motivating example was the fraction of 0’s in the n-bit (generalized) Zeckendorf
representation of integers. The question was: How many of these fractions need to be increasing
to show that these fractions are always increasing?

Before giving conditions for K-in-a-row implies always, let’s see an example in which this
rule does not hold. Consider the difference equation

xn = 2xn−1 − xn−2

and the property xn > 0. If the rule held for this example, there would be a K so that if

x0 > 0, x1 > 0, . . . , xK−1 > 0

then xn > 0 for all n ≥ 0. But, the sequence xn = (K − n ) satisfies this difference
equation and

x0 = K > 0, x1 = K − 1 > 0, . . . , xK−1 = 1 > 0
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but xK = 0 6> 0 and in fact xn < 0 for all n > K. Hence, there is NO value of K so that
K-in-a-row-positive implies always positive.

1.1. Some Things We All Know. In contrast to the above, we all know how to show familiar
facts about the Fibonacci numbers, like Fibonacci numbers are MONOTONE INCREASING
(for n > 2). The proof follows from the difference equation

fn = fn−1 + fn−2.

So if fn−1 > 0 and fn−2 > 0 then fn > fn−1. Or said another way, 0 < f1 ≤ f2 implies
fn > fn−1 for all n > 2. So, in this example, if I tell you that the sequence is increasing
TWICE then it is ALWAYS increasing.

Unfortunately, things may not always be quite this easy. We all know that

fn
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−→ 1 +
√
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2
,

but these ratios are NOT MONOTONE, they oscillate above and below their limit.
On the other hand
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and is MONOTONE increasing for n ≥ 4. This result could be proved using the identity
fn+1 fn−1 − f2n = ±1, but we desire a more general approach. The Fibonacci polynomial
(i.e. the characteristic polynomial of the Fibonacci difference equation) is x2 − x − 1, a
NonNegative polynomial. If we multiply this polynomial by x − 1 we get x3 − 2x2 + 1
which is NOT NonNegative, but is the characteristic polynomial of Zn = 2Zn−1 − Zn−3.
Notice that 1 + fn does satisfy this equation, but does not satisfy the Fibonacci DE (we will
use DE as an abbreviation for difference equation), fn = fn−1 + fn−2, (the extra +1 gets in
the way). Also fn does satisfy this DE. So the monotone ratios that we’ve found are the ratios
of two different solutions to the difference equation Zn = 2Zn−1 − Zn−3. We will consider
a class of DE’s for which this DE may serve as a prototype.

2. What’s the Difference?

The behavior of solutions of difference equations can often be explained in terms of the
properties of their associated characteristic polynomials. To explain our examples, we will
contrast the well-known NonNegative polynomials [6] with the SP polynomials [7].

NonNegative Difference Equations

Difference Equation (kth order): Zn = c1 Zn−1 + . . . + ck Zn−k.
Characteristic Polynomial: ch(x) = xk − c1 x

k−1 − . . . − ck .
NonNegative: each ci ≥ 0 and ck > 0.
Aperiodic (primitive): gcd{ i | ci > 0 } = 1 .

Some Facts about NonNegative Difference Equations and Polynomials [6]

• Unique positive real root λ0.
• λ0 ≥ |λi | for any other root λi.
• If aperiodic, λ0 > |λi | for any other root λi.
• If k Zn’s in a row are positive, then Zn > 0 for all larger n.
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• If k + 1 in a row are increasing, then Zn is always increasing.
• If λ0 = 1, then there is NO always increasing solution

(there are never k + 1 in a row increasing).

SP (Sorta Positive) Difference Equations

Difference Equation (kth order): Zn = bk−1 Zn−1 − bk−2 Zn−2 − . . . − b0 Zn−k.
Characteristic Polynomial: S(x) = xk − bk−1 x

k−1 + bk−2 x
k−2 + . . . + b1 x + b0.

Sorta Positive: bi ≥ 0 and b0 > 0.
(We call these Sorta Positive since all the coefficients except one must be
nonnegative, i.e. sort of positive.)

Some Facts about SP Polynomials and Difference Equations 1

• S(x) has 0 or 2 positive real roots λ0 and λ1.
• λ0 ≥ λ1.
• All other roots are dominated by λ1:
λ0 ≥ λ1 > |λi |.
• Zn is O(λn0 ) if λ0 > λ1

(for “reasonable” initial conditions, Zn is Θ(λn0 ) ).
• Zn is O(nλn0 ) if λ0 = λ1

(for “reasonable” initial conditions, Zn is Θ(nλn0 ) ).

In our example, fn = fn−1 + fn−2 is a NonNegative difference equation, gn = 2 gn−1 −
gn−3 is an SP difference equation. The fn equation has a single positive eigenvalue λ0 =
( 1 +

√
5 ) / 2, while the gn equation has two positive eigenvalues λ0 and 1. As noted above

fn / λ
n
0 cannot be monotone, but it’s perfectly possible that gn / λ

n
0 may be monotone, and

we’ll see below that initial monotonicity implies always monotone.

3. SP (Sorta Positive Polynomials)

We defined SP polynomials so that we could show that certain ratios were monotone in-
creasing. The following theorem gives the conditions.

Theorem 3.1. (SP Theorem) If Nn and Wn are any two POSITIVE sequences which are
solutions to a difference equation with a kth order SP polynomial S(x) as its characteristic
polynomial, then the condition

N0

W0
≤ N1

W1
≤ . . . ≤ Nk−1

Wk−1

with at least one of these inequalities strict, (<) implies

Nn

Wn
is monotone increasing for all n ≥ k.

Proof. Consider

Di,j =

∣∣∣∣Ni Wi

Nj Wj

∣∣∣∣ = NiWj − NjWi = WiWj

(
Ni

Wi
− Nj

Wj

)
.

1T (n) = Θ( g(n) ) means there exist positive constants c1 and c2 so that c1 |g(n)| ≤ |T (n) | ≤ c2 |g(n)|
for all sufficiently large n. T (n) = O( g(n) ) means there exists a positive constant c so that |T (n) | ≤ c |g(n)|
for all sufficiently large n.[6]
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Clearly, Di,j is anti-symmetric, i.e. Di,j = −Dj,i and Di,i = 0. Now consider Dn+1,n =

Wn+1Wn

(
Nn+1

Wn+1
− Nn

Wn

)
. If Nn

Wn
is increasing (≥ ) or strictly increasing (> ) then Dn+1,n ≥ 0

or Dn+1,n > 0. Then assuming that Nn and Wn satisfy an SP difference equation,

Dn+1,n = bk−1Dn,n − bk−2Dn−1,n − . . . − b0Dn+1−k,n

= bk−2Dn,n−1 + . . . + b0Dn,n+1−k.

If
Nk−1
Wk−1

≥ Nk−2
Wk−2

≥ . . . ≥ N0

W0
,

then Dk−1,k−i ≥ 0 for i ∈ [ 2, k ], and if least one of these inequalities is strict, Dk−1,0 > 0.
So Dk,k−1 > 0 and by induction Dn,n−1 > 0 for all n ≥ k, and the corresponding ratios are
strictly increasing. �

As an immediate application of this theorem, consider the generalized Fibonacci polynomial
xk − xk−1 − . . . − 1 which is not SP but when multiplied by x − 1 the product polynomial
is xk+1 − 2xk + 1 which is SP. Let 〈fn〉 = 〈1, 1, 2, 4, 7, 13, 24, . . . 〉 be the 3rd order Fibonacci
numbers. Clearly the ratio
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,
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7
, . . .

is converging to λ0, the positive root of x3−x2 −x −1, but this convergence is not monotone.
On the other hand, 3 + fn is a solution to the difference equation associated with x4 − 2x3 + 1,
and, of course, so is fn+1. Now consider

fn+1
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=
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This sequence is also converging to λ0, but now because the characteristic polynomial
x4 − 2x3 + 1 is SP, the convergence is monotone.

3.1. Multiply SP. As we saw above, not all polynomials are SP, but sometimes we may be
able to “change” a polynomial into SP form.
If p(x) is a polynomial, is there another polynomial r(x), so that p(x) r(x) is SP?
If so we say that p(x) is multiply SP.

Necessary Conditions for Multiply SP:

• p(x) has at most TWO positive real roots.
• IF p(x) has one positive real root, then this root dominates all other roots.
• IF p(x) has two positive real roots λ1 and λ2,
λ1 ≥ λ2 and λ2 dominates all other roots.
• IF p(x) is a multiple of a PERIODIC NonNegative polynomial,

then p(x) is NOT multiply SP
(because the positive real root is NOT dominant).

Theorem 3.2. If p(x) is a polynomial with a unique positive dominant root λ0 and p(x)
x−λ0 has

only positive coefficients, then p(x) is multiply SP, and the resulting SP polynomial S(x) can
be taken so that λ0 > |λi | for every λi which is a root of S(x).
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3.2. Multiply SP in MOD Form.

Theorem 3.3. IF xn ≡ qn(x) mod p(x)
AND xn−1 ≡ qn−1(x) mod p(x)
AND ∃β so that qn(x) − β qn−1(x) has only negative coefficients
THEN xn − β xn−1 − qn(x) + β qn−1(x) is SP
(and is a multiple of p(x)).

Computing xn mod p(x)

If p(x) = xk + p1 x
k−1 + p2 x

k−2 + . . . + pk−1 x + pk
xk ≡ −p1 xk−1 − p2 x

k−2 − . . . − pk−1 x − pk mod p(x)
−p1 1 0 . . . 0
−p2 0 1 . . . 0

...
. . .

−pk 0 0 . . . 0



q1
q2
...
qk

 =


q̂1
q̂1
...
q̂k


xr ≡ q1 x

k−1 + . . . + qk

xr+1 ≡ q1 x
k + . . . + qk x

≡ q1 (−p1xk−1 − . . . − pk ) + q2 x
k−1 + . . . + qk x

≡ q̂1 x
k−1 + . . . + q̂k mod p(x).

Our procedure is to repeatedly compute xr mod p(x), until there is a β so that xr − βxr−1

is an SP polynomial. The matrix times vector calculates xr mod p(x) from xr−1 mod p(x).

3.3. Examples. Let us demonstrate this method for two Fibonacci examples.

Example 1: p(x) = x2 − x −1 . In this example, the matrix has 1’s in its first column
because p(x) has -1’s for its two coefficients.

M =

[
1 1
1 0

]
M

(
1
1

)
=

(
2
1

)
x3 ≡ 2x + 1 mod p(x)

x2 ≡ x + 1 mod p(x)

Taking β = 2,
x3 − 2x2 ≡ −1 mod p(x).

So S(x) = x3 − 2x2 + 1. Notice that this is just the polynomial we found in Section 1
which allowed us to show that fn / ( fn−1 + c ) is monotone increasing.

From the formulation above, we could choose other values for β. For example, if we took
β = 4, we’d get the polynomial x3 − 4x2 + 2x + 3, which would allow us to show that
( 3n + fn ) / ( 3n−1 + fn−1 ) is monotone increasing. But this will be of little help if we’re
interested in Fibonacci numbers because all it says is that 3n grows much faster than the
Fibonacci numbers. What we’re doing is introducing an extra root. To get formulas that help
us understand Fibonacci numbers we’d need this root to be ≤ λ0 (and even = λ0 may be too
big).
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Example 2: p(x) = (x2 − x − 1 )2 = x4 − 2x3 − x2 + 2x + 1.
The corresponding matrix and the first few iterates are:

2 1 0 0
1 0 1 0
−2 0 0 1
−1 0 0 0




2
1
−2
−1

 →


5
0
−5
−2

 →


10
0
−12
−5


x6 ≡ 10x3 + 0x2 − 12x − 5 mod p(x)

2x5 ≡ 10x3 + 0x2 − 10x − 4 mod p(x) .

So when we choose β = 2,

S(x) = x6 − 2x5 + 2x + 1 ≡ 0 mod p(x).

It’s easy to check that S′(λ0) = 0 and so the roots of S(x) are bounded by λ0. Of course, this
is obvious because p(x) has a double root at λ0. This result will allow us to show that for the
usual ( k = 2 ) Fibonacci numbers, ratios like (nAn + Bn ) / (nCn + Dn ) are monotone
increasing (or decreasing). In the next section, we will see that similar results hold for the kth

order Fibonacci numbers regardless of k.

4. Fibonacci and SP

The Fibonacci Polynomials are Multiply SP

• ch(x) = xk − xk−1 − . . . − 1
• r(x) = x − 1
• r(x) ch(x) is SP
• r(x) ch(x) = xk+1 − 2xk + 1

So
Fn + c

Fn−1 + c
is monotone increasing,

if

• Fn is any solution to the kth order Fibonacci DE, and
• Fn + c is positive, and
• this ratio is increasing for k + 1 consecutive values of n.

Squared Fibonacci Polynomials are Multiply SP

• ch(x) = xk − xk−1 − . . . − 1
• r(x) = 5x2 − 2x + 1

• r(x) [ch(x)]2 is SP
• Coefficients

5, −12, 0, 0, 4, . . . , 4(k − 3), 4k + 2, 4(k − 2), 4(k − 2), . . . , 8, 4, 0, 1
• k = 2 5, -12, 0, 10, 0, 0, 1
• k = 3 5, -12, 0, 0, 14, 4, 0, 1.

Here we’re not using the MOD calculation from the previous section. Instead we are “guess-
ing” a multiplier and showing that it works. It is somewhat surprising that the single polyno-
mial r(x) = 5x2 − 2x + 1 serves as the multiplier for all squared Fibonacci polynomials
regardless of the degree k. It is also pleasant that this multiplier is of low degree and so
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checking for monotone ratios only involves two more points after the initial conditions have
been specified.

5. Zeckendorf Representation

It is fairly well known that natural numbers can be represented in a Fibonacci base, that
is, if x is any natural number,

x =
∑

bi fi

where the fi are the Fibonacci numbers, 1, 2, 3, 5, 8, 13, . . . and while the bi’s depend
on x, each bi is in { 0, 1 }. Further the n bit representation of x is unique when no two
consecutive bi’s can both be 1 (see [11]). If instead of the usual Fibonacci numbers which
are based on the recurrence fi = fi−1 + fi−2, one uses the kth order Fibonacci numbers
based on the recurrence fi = fi−1 + fi−2 + . . . + fi−k, a representation still exists and
is unique if no k consecutive bi’s are allowed to be 1. These representations are called the
Zeckendorf representations [9, 4, 3]. One can think of the usual binary (base 2) representation
as the limit of the Zeckendorf representations when k = ∞. Zeckendorf representations have
many applications, for example in data structures [4], reliable data transmission [1][2], and
cryptography [10].

Theorem 5.1. (Zeckendorf’s Theorem) Every positive integer has a unique representation as
a sum of kth-order Fibonacci numbers which uses no k consecutive Fibonacci numbers.

n =
∑

bi fi

where each bi ∈ {0, 1}.

If we define the set of Zeckendorf, Z, strings of length n as the binary strings of length
n with no k consecutive 1’s, then the number of such strings #n is fn+2, where fn+2 stands
for the (n + 2)nd Fibonacci number of order k. This fact follows from a simple argument. A
Z-string of length n starts with either 0 or 10 or 100, . . . , or 11. . . 10 (k− 1 1’s), and for each
of these prefixes the string after the prefix is a Z string of shorter length, which gives the
recurrence

#n = #n−1 + . . . + #n−k

with the initial conditions #1 = 2, #2 = 4, . . . , #k−1 = 2k−1, #k = 2k − 1. (For consis-
tency, one could put #0 = 1.) But this recurrence is just the recurrence for the Fibonacci
numbers of order k with the initial conditions off-set by 2.

We can count Wn, the number of bits in Z strings of length n, and obviously Wn = n fn+2.
Since the bits are only 0’s and 1’s, we could count Nn, the number of 0 bits in Z strings of
length n. Obviously the number of 1’s is Wn − Nn. A formula for Nn is a little harder to
come by, but a difference equation for Nn is easy to state:

Nn = Nn−1 + Nn−2 + . . . + Nn−k + fn+2.

This equation follows from the above observation about the possible prefixes, and the fn+2

term comes from the fact that each prefix has exactly one 0. Since half of the bits in each
binary string are 0’s, the initial conditions for Nn are

Ni = i 2i−1 for i ∈ [ 0, k ].

For k = 2, it’s easy to obtain a formula for Nn:

Nn =
1

5
{n ( fn+4 + fn+2 ) − 2 fn } ,
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and this gives
Nn

Wn
=

1

5

{
fn+4 + fn+2

fn+2
− 2 fn

n fn+2

}
.

From this formula,

lim
n−→∞

Nn

Wn
=

λ20 + 1

5
≈ .7236,

and further, since the first term converges exponentially while the second (negative) term
converges like 1/n, the ratio Nn/Wn will be approaching its asymptotic value from below and
in an asymptotically monotone fashion.

n k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
1 .5000 .5000 .5000 .5000 .5000 .5000 .5000
2 .6666 .5000 .5000 .5000 .5000 .5000 .5000
3 .6666 .5713 .5000 .5000 .5000 .5000 .5000
4 .6875 .5769 .5333 .5000 .5000 .5000 .5000
5 .6923 .5833 .5378 .5161 .5000 .5000 .5000
6 .6984 .5909 .5417 .5191 .5079 .5000 .5000
7 .7017 .5944 .5450 .5214 .5097 .5039 .5000
8 .7045 .5973 .5481 .5233 .5111 .5049 .5020
9 .7066 .5998 .5500 .5249 .5122 .5057 .5025
10 .7083 .6016 .5516 .5263 .5131 .5064 .5030

∞ .7236 .6184 .5663 .5379 .5218 .5125 .5071

Table 1. The proportion of 0’s in the n bit Zeckendorf representation based
on the kth order Fibonacci numbers.

When we calculated a few values (see Table 1) [3], it appeared that convergence was always
monotone and not just asymptotically monotone. We also calculated some of these ratios for
other values of k, and still found that the convergence seemed to be always monotone.

Armed with the tools we’ve developed above, we can now prove this convergence. First,
we use the fact that squared Fibonacci polynomials are multiply SP and the SP Theorem to
obtain:

Theorem 5.2. If Nn and Wn are two positive solutions to the kth order double Fibonacci
difference equation, and Nn/Wn is increasing for the first 2 k + 2 values of n, then Nn/Wn is
always increasing.

For example, if An, Bn, Cn, and Dn are sums of Fibonacci numbers, then

nAn + Bn
nCn + Dn

will be always increasing if this ratio is initially increasing.
Next, we recall that for the Zeckendorf Ratios Nn /Wn, Nn and Wn satisfy the double

Fibonacci difference equation, i.e.
Wn = number of bits in n-bit Z-representation: Wn = n fn+2 ,
Nn = number of 0 bits in n-bit Z-representation: Nn = Nn + . . . + Nn−k + fn+2.
Let

L [Xn] = Xn − Xn−1 − . . . − Xn−k
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then

L2 [Wn] = L
[∑

i fn+2−i

]
= 0

L2 [Nn] = L [fn+2] = 0.

Theorem 5.3. The proportion of 0’s in the n bit kth order Zeckendorf representation is a
strictly increasing function of n for{

n ≥ k − 1, if k ≥ 3

n ≥ 3, if k = 2 .

We just need to show these ratios are initially increasing. The following relations make this
calculation easy:

N−j = W−j = 0 for j ∈ [ 2 , k ] , and

2Ni = Wi for i ∈ [ 0 , k − 1 ] .

6. Conclusion

Many results about Fibonacci numbers
may be proved by checking that the result
holds for a few initial values, because an as-
sociated difference equation leads to a simple
inductive proof. Here we showed that this
same strategy can be used for other proper-
ties by increasing the order of the associated
difference equation. So, while a number of
Fibonacci properties obey the Bellman’s dic-
tum: [5]
What I tell you 3 times is true,
other properties may require:
What I tell you K times is true
(with K > 3).

In particular, we introduced the idea of
SP polynomials, and showed how to convert
Fibonacci polynomials into SP polynomials.
These SP polynomials enable us to prove
monotone increasing ratios from initially in-
creasing ratios. Specifically, we showed if Fn
is any solution to a kth order Fibonacci DE
and c is a constant, then, if Fn + c is positive,
(Fn + c )/(Fn−1 + c ) is always increasing
if this ratio is initially increasing. Also we
showed that

(nAn + Bn )/(nCn + Dn )

will be always increasing if this ratio is initially increasing, where An, Bn, Cn, Dn are any
solutions to a Fibonacci DE and the numerator and denominator are positive. We used these
results to show that the fraction of 0’s in the n bit kth order Zeckendorf representation is
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always increasing (except for one situation in which the ratios for n bits and n+ 1 bits is the
same).

For our Fibonacci example, we were able to convert the non-negative polynomials into SP
polynomials by increasing the degree by 1 or 2, but for general non-negative polynomials the
needed degree increase may be substantial, e.g. from degree d to degree d2 (or even larger).

In summary, mis-quoting the Bellman (see the illustration) [5]:
What I tell you K times is true,

but K may be much larger than the defining k for a sequence. Luckily, for Fibonacci sequences
K is only 1 or 2 more than the obvious k.

We agree with Richard Guy’s [8] observation that we can be misled about inferring long
term behavior of sequences from their initial behavior because there are too few small numbers
to go around, but if we allow K to be unbounded then we may be able to predict eventual
behavior based on the first K observations. But, we also showed, by example, that there are
properties which do not obey such a K-in-a-row rule for any K.
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