
CONGRUENCES FOR BERNOULLI - LUCAS SUMS

PAUL THOMAS YOUNG

Abstract. We give strong congruences for sums of the form
∑N

n=0 BnVn+1 where Bn denotes
the Bernoulli number and Vn denotes a Lucas sequence of the second kind. These congru-
ences, and several variations, are deduced from the reflection formula for p-adic multiple zeta
functions.

1. Introduction

In this paper we are concerned with the Lucas sequences of the second kind which are defined
by the recurrence

Vn = PVn−1 +QVn−2, V0 = 2, V1 = P, (1.1)

where P and Q are integers. (If the initial conditions were V0 = 0, V1 = 1 the sequence is
called a Lucas sequence of the first kind, see (5.1) below.) Our main result (Corollary 3.2
below) is that the series

∞∑
n=0

B(r)
n (P/Qr)n+1Vn+1 = 0 in Qp (1.2)

for all primes p dividing the numerator of (P 2/Qr2), where Qp denotes the field of p-adic

numbers and B
(r)
n denotes the Bernoulli number of order r, defined below. The fact that these

series converge to zero in Qp will be used to deduce congruences for their partial sums, such
as

2N∑
n=0

Bn(P/Q)n+1Vn+1 ≡ 0 (mod pN+1) (1.3)

for all primes p dividing the numerator of (P 2/Q), meaning that each such partial sum is a
rational number whose numerator is divisible by pN+1. The main result is a consequence of
the reflection formula for p-adic multiple zeta functions. We conclude with many variations
on this theme.

2. Notations and preliminaries

The sequence {Vn} defined by (1.1) satisfies the well-known Binet formula

Vn = an + bn (2.1)

where a, b = (P ±
√
P 2 + 4Q)/2 are the reciprocal roots of the characteristic polynomial

f(T ) = 1− PT −QT 2 = (1− aT )(1− bT ). Clearly we have a+ b = P and ab = −Q.

The order r Bernoulli polynomials B
(r)
n (x) are defined [6, 3] by(

t

et − 1

)r
ext =

∞∑
n=0

B(r)
n (x)

tn

n!
; (2.2)
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these are polynomials of degree n in x and their values at x = 0 are the Bernoulli numbers

of order r, B
(r)
n := B

(r)
n (0). When r = 1 we have the usual Bernoulli numbers Bn := B

(1)
n (0).

It is well-known that B2n+1 = 0 for positive integers n; the denominator of B2n is squarefree,
being equal to the product of those primes p such that p− 1 divides 2n (von Staudt - Clausen
Theorem). Therefore the denominator of every even-indexed Bernoulli number is a multiple
of 6.

We now summarize the basics of p-adic (Barnes type) multiple zeta functions [8]. For a
prime number p we use Zp, Qp, and Cp to denote the ring of p-adic integers, the field of p-adic
numbers, and the completion of an algebraic closure of Qp, respectively. Let | · |p denote the
unique absolute value defined on Cp normalized by |p|p = p−1. Given a ∈ C×p , we define the

p-adic valuation νp(a) ∈ Q to be the unique exponent such that |a|p = p−νp(a). By convention
we set νp(0) =∞.

We choose an embedding of the algebraic closure Q̄ into Cp and fix it once and for all.
Let pQ denote the image in C×p of the set of positive real rational powers of p under this

embedding. Let µ denote the group of roots of unity in C×p of order not divisible by p. If
a ∈ Cp, |a|p = 1 then there is a unique element â ∈ µ such that |a − â|p < 1 (called the

Teichmüller representative of a); it may also be defined analytically by â = limn→∞ a
pn!

. We
extend this definition to a ∈ C×p by

â = ̂(a/pνp(a)), (2.3)

that is, we define â = û if a = pru with pr ∈ pQ and |u|p = 1. We then define the function 〈·〉 on

C×p by 〈a〉 = p−νp(a)a/â. This yields an internal direct product decomposition of multiplicative
groups

C×p ' pQ × µ×D (2.4)

where D = {a ∈ Cp : |a− 1|p < 1}, given by

a = pνp(a) · â · 〈a〉 7→ (pνp(a), â, 〈a〉). (2.5)

In [8] we defined p-adic multiple zeta functions ζp,r(s, a) for r ∈ Z+ and a ∈ Cp \ Zp by an
r-fold Volkenborn integral. However, for the purposes of this paper, we will only be concerned
with the case where |a|p > 1, and we will take the series

ζp,r(s, a) =
ar〈a〉−s

(s− 1) · · · (s− r)

∞∑
n=0

(
r − s
n

)
B(r)
n a−n (2.6)

([8], Theorem 4.1) as the definition of ζp,r(s, a) for positive integers r; this series is convergent
for s ∈ Zp when |a|p > 1, and defines ζp,r(s, a) as a C∞ function of s ∈ Zp \ {1, 2, ..., r} and a
locally analytic function of a for |a|p > 1. (This is more than sufficient for our purposes; for a
complete discussion of continuity and analyticity of ζp,r(s, a) see [8], [11]). It will be seen that
for |a|p > 1, the values at the negative integers are given by

ζp,r(−m, a) =
(−1)rr!

(m+ r)!

(
〈a〉
a

)m
B

(r)
m+r(a) (2.7)

([8], Theorem 3.2(v)). The p-adic multiple zeta functions satisfy many identities; the important
one for our present purposes is the reflection formula, which reads

ζp,r(s, a) = (−1)r〈−1〉−sζp,r(s, r − a) (2.8)
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([8], Theorem 3.2; [11],eq.(2.18)). Note that for odd primes p we have 〈−1〉 = 1; for p = 2 we
have 〈−1〉 = −1. The reflection formula for ζp,r(s, a) arises from the reflection formula

B(r)
n (r − a) = (−1)nB(r)

n (a) (2.9)

for the Bernoulli polynomials; specifically, from (2.9) and (2.7) we observe that (2.8) holds
when s is a negative integer; but both sides are continuous and the negative integers are dense
in Zp, so it holds for all s ∈ Zp.

3. Bernoulli - Lucas series

We begin this section with the simplest case of our class (1.2) of series, and then expand
from there.

Theorem 3.1. Let r, k ∈ Z with r > 0 and let {Vn} denote the Lucas sequence of the second
kind defined by the recurrence

Vn = rkVn−1 + kVn−2, V0 = 2, V1 = rk.

Then the series
∞∑
n=0

B(r)
n Vn+1 = 0 in Qp

for all primes p dividing k.

Proof. From the Laurent series expansion (2.6) with s = r + 1 we observe

ζp,r(r + 1, x) = − 1

r!

(
x

〈x〉

)r+1 ∞∑
n=0

B(r)
n (−x)−n−1 (3.1)

for |x|p > 1, since
(−1
n

)
= (−1)n. If we set x = −1/a, then r−x = (ra+1)/a and the reflection

formula (2.8) implies

0 = ζp,r(r + 1, x) + (−1)r+1〈−1〉−(r+1)ζp,r(r + 1, r − x)

= − 1

r!

((
x

〈x〉

)r+1 ∞∑
n=0

B(r)
n an+1 +

(
x− r
〈x− r〉

)r+1 ∞∑
n=0

B(r)
n

(
−a

ra+ 1

)n+1
)

= − 1

r!

(
x

〈x〉

)r+1 ∞∑
n=0

B(r)
n

(
an+1 + bn+1

)
(3.2)

where b = −a/(ra+1). In the above calculation we have used the fact that 〈·〉 is a multiplicative

homomorphism and that 〈x+y〉x+y = 〈x〉
x whenever |y|p < |x|p.

Since a + b = −rab, we may choose a, b to be the reciprocal roots of the characteristic
polynomial f(T ) = 1− rkT − kT 2 = (1− aT )(1− bT ), which satisfy a+ b = rk and ab = −k.
By the Binet formula, Vn = an + bn for all n. The condition |x|p > 1 is equivalent to |a|p < 1,
which is equivalent to |k|p < 1, which means that p divides k. This completes the proof. �

It will be observed that the condition that k ∈ Z in the above theorem is unnecessary;
the theorem would remain valid for rational numbers k whose numerator is divisible by p, or
indeed for any p-adic number k ∈ Cp with |k|p < 1. By means of a simple transformation the
above theorem may be made to accommodate almost any Lucas sequence of the second kind.
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Corollary 3.2. Let r, P,Q ∈ Z with r > 0 and let {Vn} denote the Lucas sequence of the
second kind defined by the recurrence

Vn = PVn−1 +QVn−2, V0 = 2, V1 = P.

Then the series
∞∑
n=0

B(r)
n (P/Qr)n+1Vn+1 = 0 in Qp

for all primes p dividing the numerator of (P 2/Qr2).

Proof. The substitution vn = (P/Qr)nVn transforms the Lucas sequence recurrence

Vn = PVn−1 +QVn−2, V0 = 2, V1 = P (3.3)

into the recurrence

vn = (P 2/Qr)vn−1 + (P 2/Qr2)vn−2, v0 = 2, v1 = (P 2/Qr). (3.4)

The corollary follows by applying the above theorem to {vn} with k = (P 2/Qr2). �

It will be observed that conditions of the above corollary require the rational number
(P 2/Qr2) to have a numerator other than {0, 1,−1}, but this is the only requirement for
the result to be nontrivial. The corollary may be restated as follows: Whenever the series

∞∑
n=0

B(r)
n (P/Qr)n+1Vn+1 (3.5)

converges in Qp, it converges to zero.

4. Congruences for Bernoulli - Lucas sums

In this section we show how Corollary 3.2 implies congruences for the partial sums of these
Bernoulli - Lucas series; for simplicity we consider the case where r = 1. As in the proof of
Corollary 3.2, the substitution vn = (P/Q)nVn transforms the Lucas sequence recurrence

Vn = PVn−1 +QVn−2, V0 = 2, V1 = P (4.1)

into the recurrence

vn = (P 2/Q)vn−1 + (P 2/Q)vn−2, v0 = 2, v1 = (P 2/Q). (4.2)

We put k = (P 2/Q) and suppose the prime p divides the numerator of k.

Proposition 4.1. Consider the Lucas sequence of the second kind

Vn = kVn−1 + kVn−2, V0 = 2, V1 = k,

where k ∈ Q and νp(k) = e > 0. Then
i. If p is odd, then νp(V2m) = me and νp(V2m−1) ≥ me;
ii. If e > 1, then ν2(V2m) = me+ 1 and ν2(V2m−1) = me;
iii. If e = 1, then ν2(V4m) = 2m+ 1, ν2(V4m+2) > 2m+ 2, and ν2(V2m−1) = m.

Proof. These follow by induction on m, using the non-archimedean property of νp that νp(x+
y) ≥ min{νp(x), νp(y)}, with equality when νp(x) 6= νp(y). When p = 2, we must observe
that for x, y ∈ Q2 we have ν2(x+ y) ≥ min{ν2(x), ν2(y)} with equality if and only if ν2(x) 6=
ν2(y). �
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Theorem 4.2. Consider the Lucas sequence of the second kind

Vn = kVn−1 + kVn−2, V0 = 2, V1 = k,

where k ∈ Q and νp(k) = e > 0 for some prime p. Then for all positive integers N ,

2N∑
n=0

BnVn+1 ≡ 0 (mod p(N+2)e−1).

If p = 2 the power of 2 in this congruence is exact, that is,

ν2

(
2N∑
n=0

BnVn+1

)
= (N + 2)e− 1.

Proof. Since the series converges to zero in Qp, we have

2N∑
n=0

BnVn+1 = −
∞∑

n=2N+2

BnVn+1 in Qp (4.3)

by virtue of the fact that Bn = 0 for odd n > 1. Therefore

νp

(
2N∑
n=0

BnVn+1

)
≥ min

n≥2N+2
{νp(BnVn+1)}. (4.4)

From the above proposition, all such νp(Vn+1) on the right side of (4.4) are at least (N+2)e, and
from the von Staudt-Clausen theorem we have νp(B2n) ≥ −1 for all n, since the denominator
of B2n is squarefree. The first statement follows immediately. For the second statement, the
von Staudt-Clausen theorem implies νp(B2n) = −1 for all n when p = 2 or p = 3. Therefore
ν2(B2nV2n+1) = (n+1)e−1 for all n, so all the νp values on the right side of (4.4) are distinct,
so the νp value of the sum on the left side of (4.4) is exactly equal to their minimum. �

Corollary 4.3. Consider the Lucas sequence of the second kind

Vn = PVn−1 +QVn−2, V0 = 2, V1 = P,

where P,Q ∈ Z and νp(P
2/Q) = e > 0 for some prime p. Then for all positive integers N ,

2N∑
n=0

Bn(P/Q)n+1Vn+1 ≡ 0 (mod p(N+2)e−1).

If p = 2 the power of 2 in this congruence is exact, that is,

ν2

(
2N∑
n=0

Bn(P/Q)n+1Vn+1

)
= (N + 2)e− 1.

Since the series in question are p-adically convergent, it is clear that the p-adic ordinals of
the terms are tending to infinity; but the fact that the series are converging to zero shows
that the partial sums are also exhibiting an unusual synergy in that the p-adic ordinal of each
partial sum is typically larger than that of any of its nonzero summands.

Example. Consider the Lucas numbers Ln defined by (1.1) with (P,Q) = (1, 1); the sequence
begins with the values

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, ... (4.5)
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Since P 2/Q = 1, there is no prime p which satisfies the hypotheses of Corollary 4.3 for Ln.
However, the sequence Vn = L2n satisfies (1.1) with (P,Q) = (3,−1), and therefore from
Corollary 4.3 we have

2N∑
n=0

Bn(−3)n+1L2n+2 ≡ 0 (mod 32N+3). (4.6)

for all positive integers N . In general, for any positive integer m the sequence Vn = Lmn
satisfies (1.1) with (P,Q) = (Lm, (−1)m+1), and therefore by applying Corollary 4.3 to each
prime factor p of Lm we obtain

2N∑
n=0

Bn((−1)m+1Lm)n+1Lm(n+1) ≡ 0 (mod L2N+3
m ). (4.7)

for all positive integers N .
Example. Consider the Pell-Lucas numbers Vn defined by (1.1) with (P,Q) = (2, 1); the
sequence begins with the values

2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, 39202, 94642, 228486, ... (4.8)

From Corollary 4.3 we have

ν2

(
2N∑
n=0

Bn2n+1Vn+1

)
= 2N + 3 (4.9)

for all positive integers N .
Example. Consider the Lucas-balancing numbers Cn defined by

Cn = 6Cn−1 − Cn−2, C0 = 1, C1 = 3, (4.10)

which begins with the values

1, 3, 17, 99, 577, 3363, 19601, 114243, 665857, 3880899, 22619537, ... (4.11)

We see that Vn = 2Cn satisfies the recurrence (1.1) with (P,Q) = (6,−1). Applying Corollary
4.3 with both p = 2 and p = 3 we obtain

2N∑
n=0

Bn(−6)n+1Cn+1 ≡ 0 (mod 3 · 62N+2). (4.12)

for all positive integers N .
Example. Taking P = Q = −4 in (1.1) yields Vn = 2(−2)n. From Corollary 4.3 we have

ν2

(
2N∑
n=0

Bn(−2)n

)
= 2N + 1 (4.13)

for all positive integers N .
Remark. Zagier [12] considered the ordinary generating function β(x) =

∑∞
n=0Bnx

n for-
mally, even though it doesn’t converge for any x 6= 0 (in a real or complex sense). For any
prime p, β(x) converges in Cp for |x|p < 1; in this way the functional equation ([12], Prop.
A.2) is precisely the difference equation ([8], Theorem 3.2(i)) for ζp,1(s, a). The above example
says that β(−2) = 0 in Q2. This is the only root of β(x) in Qp for any prime p.
Example. Taking P = Q = −2 in (1.1) yields the sequence {Vn} which begins with the values

2,−2, 0, 4,−8, 8, 0,−16, 32,−32, 0, 64,−128, 128, 0,−256, 512,−512, 0, ... (4.14)
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It can be verified by induction that the odd-index values satisfy V2m−1 = −2m(−1)m(m−1)/2,
so from Corollary 4.3 we have

ν2

(
N∑
m=0

B2m2m(−1)m(m+1)/2

)
= N (4.15)

for all positive integers N .
Example. Taking P = Q = −3 in (1.1) yields the sequence {Vn} which begins with the values

2,−3, 3, 0,−9, 27,−54, 81,−81, 0, 243,−729, 1458,−2187, 2187, 0, ... (4.16)

It can be verified by induction that the odd-index values satisfy V6m−3 = 0, V6m−1 = −(−27)m,
and V6m+1 = −3(−27)m for positive integers m. Since B0V1 + B1V2 = −9/2, from Corollary
4.3 we have

ν3

(
9

2
+

N∑
m=1

(−27)m
(
B6m−2 + 3B6m

))
= 3N + 2 (4.17)

for all positive integers N .

We remark that one can use Corollary 3.2 and Proposition 4.1 to give similar systems of

congruences involving higher order Bernoulli numbers B
(r)
n for r > 1. The main difference is

that νp(B
(r)
n ) is not known as explicitly when r > 1; in particular, the property B

(1)
2n+1 = 0

does not extend to order r > 1.

5. Bernoulli - Lucas sums of the first kind

If we evaluate the p-adic multiple zeta functions ζp,r(s, a) at s = r + 2 instead of s = r + 1,
we obtain similar identities involving the Lucas sequences of the first kind which are defined
by the recurrence

Un = PUn−1 +QUn−2, U0 = 0, U1 = 1. (5.1)

The LSFK satisfy the well-known Binet formula

Un =


an − bn
a− b , if P 2 + 4Q 6= 0,

nan−1, if P 2 + 4Q = 0.
(5.2)

Theorem 5.1. Let r, k ∈ Z with r > 0 and let {Un} denote the Lucas sequence of the first
kind defined by the recurrence

Un = rkUn−1 + kUn−2, U0 = 0, U1 = 1.

Then the series
∞∑
n=0

(n+ 1)B(r)
n Un+2 = 0 in Qp

for all primes p dividing k.

Proof. From the Laurent series expansion (2.6) with s = r + 2 we observe

ζp,r(r + 2, x) =
1

(r + 1)!

(
x

〈x〉

)r+2 ∞∑
n=0

(n+ 1)B(r)
n (−x)−n−2 (5.3)
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for |x|p > 1, since
(−2
n

)
= (−1)n(n+ 1). If we set x = −1/a, then r − x = (ra+ 1)/a and the

reflection formula (2.8) implies

0 = ζp,r(r + 2, x)− (−1)r+2〈−1〉−(r+2)ζp,r(r + 2, r − x)

=
1

(r + 1)!

(
x

〈x〉

)r+2 ∞∑
n=0

(n+ 1)B(r)
n

(
an+2 − bn+2

)
(5.4)

where b = −a/(ra + 1). Since a + b = −rab, we may choose a, b to be the reciprocal roots
of the characteristic polynomial f(T ) = 1 − rkT − kT 2 = (1 − aT )(1 − bT ), which satisfy
a + b = rk and ab = −k. By the Binet formula, Un = (an − bn)/(a − b) if r2k2 + 4k 6= 0; in
this case the theorem follows by dividing by a− b. In the case where r2k2 + 4k = 0, we start
from the general case with r2k2 + 4k 6= 0, divide by a− b, and take the limit as k approaches
−4/r2 p-adically. �

Corollary 5.2. Let r, P,Q ∈ Z with r > 0 and let {Un} denote the Lucas sequence of the first
kind defined by the recurrence

Un = PUn−1 +QUn−2, U0 = 0, U1 = 1.

Then the series
∞∑
n=0

(n+ 1)B(r)
n (P/Qr)n+1Un+2 = 0 in Qp

for all primes p dividing the numerator of (P 2/Qr2).

Proof. The substitution un = (P/Qr)n−1Un transforms the Lucas sequence recurrence

Un = PUn−1 +QUn−2, U0 = 0, U1 = 1 (5.5)

into the recurrence

un = (P 2/Qr)un−1 + (P 2/Qr2)un−2, u0 = 0, u1 = 1. (5.6)

The corollary follows by applying the above theorem to {un} with k = (P 2/Qr2). �

Corollary 5.3. Consider the Lucas sequence of the first kind

Un = PUn−1 +QUn−2, U0 = 0, U1 = 1,

where P,Q ∈ Z and νp(P
2/Q) = e > 0 for some prime p. Then for all positive integers N ,

2N∑
n=0

(n+ 1)Bn(P/Q)n+1Un+2 ≡ 0 (mod p(N+2)e−1).

Proof. First treat the case where P = k and Q = k, using the facts that νp(U2m) ≥ me and
νp(U2m+1) = me, as in the proof of Theorem 4.2. Then use the substitution un = (P/Q)n−1Un
to treat the general case as in Corollary 4.3. �

Example. Consider the Fibonacci numbers Fn defined by (5.1) with (P,Q) = (1, 1); the
sequence begins with the values

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, ... (5.7)
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Since P 2/Q = 1, there is no prime p which satisfies the hypotheses of Corollary 5.3 for Fn.
However, the sequence Un = F2n satisfies (5.1) with (P,Q) = (3,−1), and therefore from
Corollary 5.3 we have

2N∑
n=0

(n+ 1)Bn(−3)n+1F2n+4 ≡ 0 (mod 32N+3). (5.8)

for all positive integers N . In general, for any positive integer m the sequence Fmn is Fm
times the LSFK which satisfies (5.1) with (P,Q) = (Lm, (−1)m+1), and therefore by applying
Corollary 5.3 to each prime factor p of Lm we obtain

2N∑
n=0

(n+ 1)Bn((−1)m+1Lm)n+1Fm(n+2) ≡ 0 (mod FmL
2N+3
m ) (5.9)

for all positive integers N .
Example. Consider the Pell numbers Pn defined by (5.1) with (P,Q) = (2, 1); the sequence
begins with the values

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, ... (5.10)

From Corollary 5.3 we have

2N∑
n=0

(n+ 1)Bn2n+1Pn+2 ≡ 0 (mod 22N+3) (5.11)

for all positive integers N .
Example. Consider the balancing numbers Un defined by (5.1) with (P,Q) = (6,−1); the
sequence begins with the values

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, 7997214, ... (5.12)

From Corollary 5.3 we have

2N∑
n=0

(n+ 1)Bn(−6)n+1Un+2 ≡ 0 (mod 62N+3) (5.13)

for all positive integers N .
Examples. Taking the Lucas sequences of the first kind with (P,Q) = (−4,−4), (−2,−2),
and (−3,−3), respectively, produces

2N∑
n=0

(n+ 1)(n+ 2)Bn(−2)n ≡ 0 (mod 22N+2); (5.14)

ν2

(
1 +

N∑
m=0

(4m+ 1)B4m(−4)m

)
= 2N + 1; and (5.15)

ν3

(
2 +

N∑
m=0

(−27)m
(

(6m+ 1)B6m + 3(6m+ 3)B6m+2

))
= 3N + 2 (5.16)

for all positive integers N . In the last two cases the 2-adic (resp. 3-adic) ordinal of the sum
can be determined exactly because the ordinals of the terms can easily be determined exactly.
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One can continue this theme by evaluating ζp,r(s, a) at s = r+ k for any positive integer k;
the general result is that

∞∑
n=0

(
n+ k − 1

k − 1

)
B(r)
n (P/Qr)n+1an+k = 0 in Qp (5.17)

for all primes p dividing the numerator of (P 2/Qr2), where an = Vn if k is odd and an = Un
if k is even.

6. Euler - Lucas and Stirling - Lucas series

In this final section we mention some further variations of these results which can be obtained
involving other sequences related to the Bernoulli numbers. The order r Euler polynomials

E
(r)
n (x) are defined by (

2

et + 1

)r
ext =

∞∑
n=0

E(r)
n (x)

tn

n!
; (6.1)

these are polynomials of degree n in x and their values at x = 0 are the order r Euler numbers

E
(r)
n := E

(r)
n (0). In a manner analogous to Theorems 3.1 and 5.1 and their corollaries, one

may also prove
∞∑
n=0

E(r)
n (P/Qr)n+1Vn+1 = 0 in Qp (6.2)

and
∞∑
n=0

(n+ 1)E(r)
n (P/Qr)n+1Un+2 = 0 in Qp (6.3)

for all primes p dividing the numerator of (P 2/Qr2), where Un and Vn denote the Lucas
sequences (5.1) and (1.1). This can be proved by considering the p-adic function

ηp,r(s, a) = 〈a〉−s
∞∑
n=0

(
−s
n

)
E(r)
n a−n (6.4)

for |a|p > 1 and s ∈ Zp. (We observe from ([10], Theorem 3.2) that νp(E
(r)
n ) ≥ 0 for all n and

r when p is odd. For p = 2, we note that

E(1)
n = 2(1− 2n+1)

Bn+1

n+ 1
(6.5)

so that

ν2(E
(1)
n ) =


0, if n = 0,

∞, if n > 0 is even,

−ν2(n+ 1), if n is odd;

(6.6)

then from

E(r)
n =

∑
n1+···+nr=n

(
n

n1, ..., nr

)
E(1)
n1
· · ·E(1)

nr
(6.7)

we may obtain the crude bound ν2(E
(r)
n ) ≥ −r log2(n + 1). This is enough to show that for

|a|p > 1, the series in (6.4) is a uniformly convergent series, for s ∈ Zp, of polynomials
(−s
n

)
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which are Zp-valued for s ∈ Zp, and thus represents a C∞ function of s ∈ Zp.) At the negative
integers, we see that

ηp,r(−m, a) =

(
〈a〉
a

)m
E(r)
m (a) (6.8)

which implies that we can express ηp,1(s, a) = 2Φp(−1, s, a) in terms of the p-adic Lerch
transcendent Φp defined in [11], or ηp,1(s, a) = ζp,E(s− 1, a) in terms of the p-adic Euler zeta
function defined in [5]. From the reflection formula

E(r)
n (r − a) = (−1)nE(r)

n (a) (6.9)

for Euler polynomials we obtain the reflection formula

ηp,r(s, r − a) = 〈−1〉−sηp,r(s, a) (6.10)

for the p-adic function ηp,r. This is a generalization of the reflection formula ([5], Theorem
3.10) for the function ζp,E(s, a). The results (6.2), (6.3) then follow by evaluating ηp,r(s, a) at
s = 1 and s = 2, respectively, using this reflection formula (6.10). In general, one can evaluate
ηp,r(s, a) at s = k for any positive integer k and obtain a result analogous to (5.17).

Finally, one may use the negative integer order p-adic zeta functions ζp,−r(s, a) to produce
similar series involving the Stirling numbers of the second kind S(n, r) := S(n, r|0), where

(et − 1)rext = r!

∞∑
n=r

S(n, r|x)
tn

n!
(6.11)

generates the weighted Stirling numbers of the second kind [1, 2] with weight x. The analogous
series obtained are

∞∑
n=r

S(n, r)(−P/Qr)n+1Vn+1 = 0 in Qp (6.12)

for even r, where Vn is given by (1.1) and p divides the numerator of (P 2/Qr2); and

∞∑
n=r

S(n, r)(−P/Qr)nUn+1 = 0 in Qp (6.13)

for odd r, where Un is given by (5.1) and p divides the numerator of (P 2/Qr2). We take a
positive integer r and consider the p-adic function defined by

ζp,−r(s, a) = a−r〈a〉−ss(s+ 1) · · · (s+ r − 1)
∞∑
n=0

(
−r − s
n

)
B(−r)
n a−n (6.14)

for |a|p > 1 and s ∈ Zp. Using the identity

B(−r)
n =

(
n+ r

r

)−1
S(n+ r, r) (6.15)

we find that

ζp,−r(−m, a) = (−1)r
(
〈a〉
a

)m
r!S(m, r|a) (6.16)

for all nonnegative integers m; this shows that these functions agree with the functions
ζp,−r(s, a) defined in [11]. We appeal to the reflection formula

ζp,−r(s,−r − a) = (−1)r〈−1〉−sζp,−r(s, a) (6.17)

([11], eq. (3.5)) and evaluate the function ζp,−r(s, a) at s = 1 to obtain the results.
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