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PROBLEMS PROPOSED IN THIS ISSUE

H-720 Proposed by N. Gauthier, The Royal Military College of Canada,
Kingston, ON

Let ⌊. . .⌋ be the largest integer function and, for a positive integer n, define εn = 1 for n
even and εn = 0 for n odd. Then, with Pn the nth Pell number, prove the following identities:

(a)
∑

k≥0

(

n−2k
2k

)

25k
=

1

5n/26

[

εn(L2n+2 + 3Ln+1) + (1− εn)
√
5(F2n+2 + 3Fn+1)

]

;

(b)
∑

k≥0

(n−1−2k
2k

)

16k
=

1

2n
[Pn + n];

(c)

⌊(n−1)/4⌋
∑

k=0

(n−1−2k
2k

)

25k(n− 4k)
=

1

5n/2n

[

εn(L2n + Ln − 2(1 + (−1)n/2)) + (1− εn)
√
5(F2n + Fn)

]

;

(d)

∑

k≥1

k
(

n−1−k
k

)

5k

=
1

5n/254

[

εn((45n − 20)F2n − 15nL2n) + (1− εn)
√
5((9n − 4)L2n − 15nF2n)

]

.

H-721 Khristo N. Boyadzhiev, Ohio Northern University, Ada, Ohio

Let H0 = 0 and Hn = 1 + 1/2 + · · ·+ 1/n for n ≥ 1 be the harmonic numbers. Show that
∞
∑

n=0

FnHnz
n = C(z)

∞
∑

n=0

Fnz
n, where C(z) = 1 +

∞
∑

n=1

(

Fn−1

n
+

Fn+1

n+ 1

)

zn,

for |z| small enough.
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H-722 Proposed by Ovidiu Furdui, Campia Turzii, Romania

Let x ∈ (0, 2π), k ≥ 1 be a natural number and

Sk(x) =

∞
∑

n=1

cos(nx)

n(n+ 1)(n + 2) · · · (n+ k)
.

Prove that Sk(x) equals

(2 sin(x/2))k

k!



− cos
(π − x)k

2
· ln(2(1 − cosx))

2
− π − x

2
sin

(π − x)k

2
+

k
∑

j=1

cos (π−x)(j−k)
2

j(2 sin(x/2))j



 .

H-723 Proposed by Ovidiu Furdui, Campia Turzii, Romania

Let k ≥ 2 be an integer and let m be a nonnegative integer. Prove that

lim
n→∞

1

nk−1

n
∑

i1=1

· · ·
n
∑

ik=1

1

i1 + i2 + · · ·+ ik +m
=

k

(k − 1)!

k
∑

j=2

(−1)k−jjk−2

(

k − 1

j − 1

)

ln j.

H-723 Proposed by Hideyuki Ohtsuka, Saitama, Japan

Determine
(

∞
∑

k=1

1

F 2
4k

−
∞
∑

k=1

1

L2
4k

+

∞
∑

k=1

1

L2
2k

)(

∞
∑

k=1

1

F 2
2k

)−1

.

SOLUTIONS

A k-Fibonacci Identity

H-696 Proposed by Sergio Falcón and Ángel Plaza, Gran Canaria, Spain
(Vol. 47, No. 4, November 2009/2010)

For any positive integer k, the k-Fibonacci sequence, say {Fk,n}n≥0 is defined recurrently

by Fk,n+1 = kFk,n + Fk,n−1 for n ≥ 1, with initial conditions Fk,0 = 0; Fk,1 = 1. For n ≥ 0,

and i ≥ j define Si,j =

j−1
∑

r=0

kFk,i−rFk,j−r. Prove by combinatorial arguments that

Si,j =

{

Fk,iFk,j+1 if j is odd,
Fk,iFk,j+1 − Fk,i−j if j is even.

Solution by the proposers

It is well-known that the k-Fibonacci numbers, Fk,n, count the number of tilings of an (n−1)-
board with k-distinguished (or colored) squares and black dominoes (see [1]). For convenience,
we will use the notation fk,n = Fk,n+1. For k-distinguished squares we understand that each
square may be labeled (or colored) in k different ways.

We use the concepts of breakable tiling and unbreakable tiling (see [1]). It is said that a
tiling of an n-board is breakable at cell p, if the tiling can be decomposed into two tilings, one

AUGUST 2012 281



THE FIBONACCI QUARTERLY

1    2                                  p                                      n 

Unbreakable at cell 

Breakable at cell 

p: 

p: 

1    2                                  p                                      n 

Figure 1. An (n)-board is either breakable or unbreakable at cell p.

covering cells 1 through p and the other covering cells p+ 1 through n. On the other hand, a
tiling is said to be unbreakable at cell p if a domino occupies cells p and p+ 1. See Figure 1.

Consider two tilings offset as in Figure 2. The first one tiles cells 2 through 9; the second one
tiles cells 1 through 6. Following again [1] we say that there is a fault at cell r, for 1 ≤ r ≤ 6,
if both tilings are breakable at cell r. The pair of tilings of Figure 2 has faults at cells 1, 4,
and 6.

  1     2     3    4     5     6    7    8     9

Figure 2. Two tilings with their faults (in gray lines).

To tackle this identity we first rewrite the identity in function of k-tiling boards using

fk,n = Fk,n+1 to obtain Si,j =

j−1
∑

r=0

kfk,i−r−1fk,j−r−1 =

j
∑

r=1

kfk,i−rfk,j−r, and then

Si,j =

{

fk,i−1fk,j if j is odd,
fk,i−1fk,j − fk,i−j−1 if j is even.

Now we consider pairs of tilings: an (i − 1)-tiling covering cells 2 through i and a j-tiling
covering cells 1 through j, with j ≤ i.

Question: How many tilings of an (i− 1)-board and j-board exist?
Answer 1: There are fk,i−1fk,j such tilings.
Answer 2: Condition on the location of the first fault. See Fig. 3 left. Note that the first

fault may appear at cell r, for 1 ≤ r ≤ j, and there are kfk,i−rfk,j−r of such tilings, where the
k factor corresponds to the k possible colorings of the unique square that appears in the first r
cells either in the (i− 1)-board, or in the j-board. Summing up on r we get Si,j except for the
case in which there are no faults in the pair of tilings; that is, if j is even (see Figure 3 right).
Therefore if j is even Si,j is equal to fk,i−1fk,j − fk,i−j−1. �
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Figure 3. Two tilings with their faults (in gray lines), and two tilings with
no faults if j is even.
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Also solved by Paul S. Bruckman.

Cubonomials

H-697 Proposed by N. Gauthier, Kingston, ON
(Vol. 48, No. 1, February 2011)

Define K0 = 1 and, for a positive integer n, let Kn represent the sum of the cubes of the
first n positive integers. Then define

[

n

k

]

K

=
KnKn−1 · · ·Kn−k+1

KkKk−1 · · ·K1K0
, for 0 ≤ k ≤ n.

a) Show that

[

n

n− k

]

K

=

[

n

k

]

K

.

b) Show that

[

n

k

]

K

= m2, where m = m(n, k) is a positive integer.

c) Find a closed form expression for Sn =
∑

k≥0m(n, k).

Solution by Ángel Plaza and Sergio Falcón

a)

[

n

n− k

]

K

=

[

n

k

]

K

⇔ KnKn−1 · · ·Kn−k+1

KkKk−1 · · ·K1K0
=

KnKn−1 · · ·Kk+1

Kn−kKn−k−1 · · ·K1K0
,

which it is true since the cross product is the same: KnKn−1 · · ·K1K0. For convenience
we can denote it by (Kn)!. �

b) We use that Kn = 1
4n

2(n+ 1)2. Then

[

n

k

]

K

=
KnKn−1 · · ·Kn−k+1

KkKk−1 · · ·K1
=

(

∏n
n−k+1 i(i+ 1)
∏k

i=1 i(i+ 1)

)2

=

(

n(n− 1) · · · (n− k + 1)

k(k − 1) · · · 1 · (n + 1)n(n − 1) · · · (n− k + 2)

(k + 1)k(k − 1) · · · 2

)2

=

(

1

k + 1

(

n

k

)(

n+ 1

k

))2

=

((

n

k

)(

n+ 1

k + 1

)

−
(

n+ 1

k

)(

n

k + 1

))2

.
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So m = m(n, k) =

(

n

k

)(

n+ 1

k + 1

)

−
(

n+ 1

k

)(

n

k + 1

)

. �

c) We use the Vandermonde convolution:

Sn =
∑

k≥0

m(n, k) =
∑

k≥0

1

n+ 1

(

n+ 1

k

)(

n+ 1

k + 1

)

=
1

n+ 1

(

2n+ 2

n

)

.

�

Also solved by Paul S. Bruckman and the proposer.

Sums of Reciprocals of Squares of Fibonacci Numbers

H-698 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 48, No. 1, February 2011)

i) Prove that
(

∞
∑

k=n

1

F 2
k

)−1

= Fn−1Fn − (−1)n

3
+O

(

1

F 2
n

)

.

ii) Is it true that for all nonnegative integers m we have the estimate

(

∞
∑

k=n

1

FkFk+m

)−1

=
n−1
∑

k=1

FkFk+m +
1

3
Fm−2(−1)n +O

(

1

F 2
n

)

,

where the constant implied by the above O might depend on m?

Solution by Paul Bruckman

We will prove only part (b) since part (a) is the special case of part (b) with m = 0. Let

Am,n =
∞
∑

k=n

1

FkFk+m
.

Then

Am,n =

∞
∑

k=n

5

(αk − βk)(αk+m − βk+m)
=

5

αm

∞
∑

k=n

β2k

(1− ck)(1− ck+m)
,

where c = β/α = −β2. Then

Am,n =
5

αm

∞
∑

k=n

β2k

{

1

1− ck
− cm

1− ck+m

}

1

1− cm

=
5

αm

∞
∑

k=n

β2k

1− cm

{

1 + ck − cm(1 + ck+m) +Om(c2k)
}

.
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Thus,

Am,n =
5

αm(1− cm)

∞
∑

k=n

{

β2k(1− cm) + (β2c)k(1− c2m) +Om((β2c2)k)
}

=
5

αm

∞
∑

k=n

{

β2k + (β2c)k(1 + cm) +Om((β2c2)k
}

.

Note that β2c = −β4, β2c2 = β6. Then

Am,n =
5

αm

{

β2n

1− β2
+ (1 + cm)

(−β4)n

1 + β4
+Om(β6n)

}

=
5

αm

{

β2n

−β
+ (1 + cm)

(−β4)n

3β2
+Om(β6n)

}

=
5

αm

{

1

α2n−1
+ (1 + cm)(−1)n

1

3α4n−2
+Om(β6n)

}

=
5

αm+2n−1

{

1 + (1 + cm)(−1)n
1

3α2n−1
+Om(β4n)

}

.

We are interested in computing a comparable expression for 1/Am,n, which we compute as

1

Am,n
=

αm+2n−1

5

{

1− (1 + cm)(−1)n
1

3α2n−1
+Om(β4n)

}

.

Expanding the above expression out we find

1

Am,n
=

αm+2n−1

5
− (−1)n

15
Lm +Om

(

1

F 2
n

)

. (1)

We seek to equate the above expression asymptotically with Bm,n, where

Bm,n =

n−1
∑

k=1

FkFk+m +
1

3
Fm−2(−1)n +Om

(

1

F 2
n

)

.

Now

n−1
∑

k=1

FkFk+m =
1

5

n−1
∑

k=0

(αk − βk)(αk+m − βk+m)

=
1

5

n−1
∑

k=0

(α2k+m + β2k+m − (−1)k(αm + βm))

=
αm

5

(

α2n − 1

α2 − 1

)

+
βm

5

(

β2n − 1

β2 − 1

)

− Lm

10
{1− (−1)n}.

Thus,

n−1
∑

k=1

FkFk+m =
Lm+2n−1 − Lm−1

5
− Lm

10
{1 − (−1)n} =

αm+2n−1

5
− 1

5
Lm−(−1)n +Om

(

1

F 2
n

)

.
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To the above expression we add Fm−2(−1)n/3. We find

1

3
Fm−2(−1)n − 1

5
Lm−(−1)n =

1

15

{

5Fm−2(−1)n − 3Lm−(−1)n
}

=
1

15

{

Lm+1−2(−1)n + Lm−1−2(−1)n − 3Lm−(−1)n
}

= −(−1)n

15
Lm,

after some simplification. That is,

n−1
∑

k=1

FkFk+m +
1

3
Fm−2(−1)n =

αm+2n−1

5
− (−1)n

15
Lm +Om

(

1

F 2
n

)

. (2)

Comparing (1) with (2), gives the desired result.

Part a) also solved by the proposer.

A Sequence Involving nth Roots of the Γ Function

H-699 Proposed by Ovidiu Furdui, Cluj, Romania and Huizeng Qin, Shandong,
China (Vol. 48, No. 1, February 2011) Let k ≥ 0 be a natural number and let
(xn)n∈N be the sequence defined by

xn = n

√

Γ

(

−2k +
1

2

)

Γ

(

−2k +
1

3

)

· · ·Γ
(

−2k +
1

n

)

− n

√

(−1)n−1Γ

(

−(2k + 1) +
1

2

)

Γ

(

−(2k + 1) +
1

3

)

· · ·Γ
(

−(2k + 1) +
1

n

)

,

where Γ denotes the classical Gamma function. Find limn→∞ xn/n.

Solution by the proposers

The limit equals
2k

e(2k + 1)!
.

We have, since Γ(1− z) = −zΓ(−z), that for a positive integer a one has

Γ

(

−a+
1

i

)

= (−1)aΓ

(

1

i

) a
∏

j=1

1

j − 1/i
.

It follows that

Γ

(

−2k +
1

i

)

= Γ

(

1

i

) 2k
∏

j=1

1
(

j − 1
i

) and Γ

(

−(2k + 1) +
1

i

)

= −Γ

(

1

i

) 2k+1
∏

j=1

1

(j − 1/i)
,

which implies that

ln Γ

(

−2k +
1

i

)

= lnΓ

(

1

i

)

−
2k
∑

j=1

ln

(

j − 1

i

)

.
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Also,

ln Γ

(

1

i

)

= −γ

i
+ ln i+

∞
∑

m=1

(

1

im
− ln

(

1 +
1

im

))

.

We have,

xn
n

= e− lnn

(

e
1

n

n
∑

i=2

ln Γ(−2k+ 1

i ) − e
1

n

n
∑

i=2

ln(−Γ(−(2k+1)+ 1

i ))
)

= e− lnn






e

1

n

n
∑

i=2

(

ln Γ( 1

i )−
2k
∑

j=1

ln(j− 1

i )

)

− e

1

n

n
∑

i=2

(

lnΓ( 1

i )−
2k+1
∑

j=1

ln(j− 1

i )

)






=

(

1− e
− 1

n

n
∑

i=2

ln(2k+1−1/i)
)

e

1

n

n
∑

i=2

(

ln Γ( 1

i )−
2k
∑

j=1

ln(j− 1

i )

)

−lnn

.

(3)

We have,

1

n

n
∑

i=2



ln Γ

(

1

i

)

−
2k
∑

j=1

ln

(

j − 1

i

)



 =
1

n

n
∑

i=2



ln Γ

(

1

i

)

− ln(2k)! −
2k
∑

j=1

ln

(

1− 1

ij

)





= − ln(2k)!
n − 1

n
+

1

n

n
∑

i=2

ln Γ

(

1

i

)

− 1

n

n
∑

i=2

2k
∑

j=1

ln

(

1− 1

ij

)

.

On the other hand,

n
∑

i=2

ln Γ

(

1

i

)

=
n
∑

i=2

(

−γ

i
+ ln i+

∞
∑

m=1

(

1

im
− ln

(

1 +
1

im

))

)

= −γ(Hn − 1) + ln(n!) +

n
∑

i=2

(

∞
∑

m=1

(

1

im
− ln

(

1 +
1

im

))

)

.

It follows that

1

n

n
∑

i=2



ln Γ

(

1

i

)

−
2k
∑

j=1

ln

(

j − 1

i

)



− lnn =
−γ(Hn − 1)

n
+

lnn!− n lnn

n

− ln(2k)!
n − 1

n
+

1

n

n
∑

i=2

(

∞
∑

m=1

(

1

im
− ln

(

1 +
1

im

))

)

− 1

n

n
∑

i=2

2k
∑

j=1

ln

(

1− 1

ij

)

.

Now we calculate the following three limits by using the Cesaro Stolz Lemma.

lim
n→∞

1

n

n
∑

i=2

ln(2k + 1− 1/i) = lim
n→∞

ln(2k + 1− 1/(n + 1)) = ln(2k + 1).
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lim
n→∞

1

n

n
∑

i=2

(

∞
∑

m=1

(

1

im
− ln

(

1 +
1

im

))

)

= lim
n→∞

∞
∑

m=1

(

1

(n+ 1)m
− ln

(

1 +
1

(n+ 1)m

))

= 0.

lim
n→∞

1

n

n
∑

i=2





2k
∑

j=1

ln

(

1− 1

ij

)



 = lim
n→∞

2k
∑

j=1

ln

(

1− 1

j(n+ 1)

)

=
2k
∑

j=1

lim
n→∞

ln

(

1− 1

j(n + 1)

)

= 0.

lim
n→∞

−γ(Hn − 1)

n
= 0 and lim

n→∞

lnn!− n lnn

n
= −1.

It follows based on (3) and the preceding limits that

lim
n→∞

xn
n

= (1− e− ln(2k+1))e−1−ln(2k)! =
2k

e(2k + 1)!
,

and the problem is solved.

Also solved by Paul Bruckman.

Errata: The first problem labeled H-717 in Volume 49 no. 2, May 2012 should read
H-716.

288 VOLUME 50, NUMBER 3


