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PROBLEMS PROPOSED IN THIS ISSUE

H-760 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

Prove that if m ≥ 1, k ≥ 1, n ≥ 0 are integers then

mm
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H-761 Proposed by Ovidiu Furdui, Campia Turzii, Romania.
(Dedicated to the memory of Paul S. Bruckman)

Prove that
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where ζ denotes the Riemann zeta function.

H-762 Proposed by George Hisert, Berkeley, California.

Prove that for any positive integers r and n and positive integer p,

(i)

b(p−1)/2c
∑

k=0
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)
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n+4rF
p−k
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n ) = F

p
4rLp(n+2r).
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H-763 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

Prove that:

(i)
n
∑

k=1

F 4
k

k2
≥ 6F 2

nF
2
n+1

n(n+ 2)(2n + 1)
;

(ii)
n
∑

k=1

F 6
k
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nF
3
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;

(iii)
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∑

k=1

F 6
k

k4
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nF
3
n+1

n2(n + 1)2(2n+ 1)2
;

(iv)
n
∑

k=1

F 8
k

k3
≥ 4F 4

nF
4
n+1

n2(n + 1)2
;

(v)
n
∑

k=1

F 4
k
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nF
2
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;
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n
∑
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k
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3
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n4(n + 1)4
.

H-764 Proposed by H. Ohtsuka, Saitama, Japan.

Let

(

n

k

)

F

denote the Fibonomial coefficient. For n ≥ 1, prove that

(i)
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k=0
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)
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)

F

;
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n
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.

SOLUTIONS

Asymptotic Approximation of a Function Defined by a Sum

H-731 Proposed by Anastasios Kotronis, Athens, Greece.
(Vol. 51, No. 1, February 2013) Show that

f(x) :=

∞
∑

n=1

n cosh(nx)

sinh(nπ)
=

1

(π − x)2
+

3π − 12

12π
+O ((π − x)) as x → π−.

Solution by the proposer.

At first we prove a trivial lemma.

Lemma 1. Let an = a1 + (n− 1)a and bn = b1b
n−1 with a, a1, b1 ∈ R, b 6= 1 be an arithmetic

and a geometric progression, respectively. If cn := anbn, then

n
∑

k=1

ck =
a1b1(1− bn)

1− b
+

ab1b

(1− b)2
(1− nbn−1 + (n− 1)bn).
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Proof. We have

n
∑

k=1

cn =

n
∑

k=1

(a1 + (k − 1)a)b1b
k−1

= a1b1

n
∑

k=1
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∑
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=
a1b1(1− bn)

1− b
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d
(
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k
)

db
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d
(
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1−b

)
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=
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+
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(1− nbn−1 + (n− 1)bn).

�

For x → π−, we have

f(x) =

+∞
∑

n=1

ne−n(π−x) 1 + e−2nx
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=

+∞
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∑

n=1

ne−n((2k+1)π+x)
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1
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csch2
(
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2

)

)

=
1

4

(
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(
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2

)

+
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∑
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2

)

+
+∞
∑
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(
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2

)

)

. (1)

In the above arguments, we used Lemma 1 with a = a1 = 1 and b = b1 = e−((2k+1)π±x).
Now, as x → π−, we have
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csch2
(
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2

)

=
4

(

e
π−x
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π−x

2

)2

=
4

(

π − x+ (π−x)3

24 +O ((π − x)5)
)2

=
4

(π − x)2

(

1 +
(π − x)2

24
+O

(

(π − x)4
)

)−2

=
4

(π − x)2
− 1

3
+O

(

(π − x)2
)

, (2)

and for k ≥ 1, x → π−

csch2
(

(2k + 1)π − x

2

)

=

(

2

(ekπ − e−kπ) (1 +O(π − x))

)2

= csch2(kπ) +O
(

(π − x)csch2(kπ)
)

, (3)

and similarly

csch2
(

(2k − 1)π + x

2

)

= csch2(kπ) +O
(

(π − x)csch2(kπ)
)

. (4)

Now with the aid of (4), (3), (2), (1), we get

f(x) =
1

(π − x)2
− 1

12
+

1

2

+∞
∑

k=1

csch2(kπ) +O(π − x)

=
1

(π − x)2
− 1

4π
+O(π − x) (x → π−).

For the result
+∞
∑

k=1

csch2(kπ) =
π − 3

6π
,

which was used above, we refer the reader to [1] for a solution via complex analysis methods.

References

[1] R. E. Shafer, Problem 5063, with solutions by A. E. Livingston and J. Raleigh, Amer. Math. Monthly, 70
(1963), 1110–1111.

Errata: Note that the second term in the expansion is − 1

4π
instead of

3π − 12

12π
. This is

due to a miscalculation in the original submission.

Also solved by Paul S. Bruckman.

Some Properties of Catalan Numbers

H-732 Proposed by N. Gauthier, Kingston, ON
(Vol. 51, No. 1, February 2013)

In the following, Ck is the kth Catalan number with the convention that Ck = 0 if k < 0.
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(1) For nonnegative integers m,n let

cm(n) =
∑

k≥0

(−1)k
(

n− k

k

)

Cn−m−k.

Find a closed form for cm(n).
(2) For nonnegative integers m,n let

Gm(n) =
∑

k≥0

(−1)k
(

n− k

k

)(

2(n−m− k)

n−m− k

)

.

(a) Show that Gm(n) = 0 for 0 ≤ n ≤ m− 1.
(b) Find a closed form for Gm(n) if n ≥ 2m.
(c) Show that Gm(n+m) is a polynomial of degree n in m and express the polynomial

coefficients as a ratio of two determinants.

Solution by Harris Kwong, SUNY Fredonia, Fredonia, NY.

(1) Recall that the generating function for the Catalan numbers is

C(x) =
∑

n≥0

Cnx
n =

1−
√
1− 4x

2x
,

so that
A(x) =

∑

n≥0

Cn−mxn = xm
∑

n≥m

Cn−mxn−m = xmC(x).

Next, we derive the generating function for cm(n):

cm(x) =
∑

n≥0

cm(n)xn =
∑

n≥0





∑

k≥0

(−1)k
(

n− k

k

)

Cn−m−k



xn.

Set n = k + ` so that we can write

cm(x) =
∑

`≥0

C`−mx`
∑̀

k=0

(

`

k

)

(−x)k =
∑

`≥0

C`−m[x(1− x)]` = A
(

x− x2
)

.

Since

C
(

x− x2
)

=
1−

√

1− 4
(

x− x2
)

2x(1 − x)
=

1− (1− 2x)

2x(1− x)
=

1

1− x
,

we find cm(x) = xm(1− x)m−1. Therefore, by comparing coefficients of xn, we determine that

cn(m) = (−1)n−m

(

m− 1

n−m

)

.

(2) By now, it is obvious that the same argument would lead to

Gm(x) =
∑

n≥0

Gm(n)xn =
(

x− x2
)m

B
(

x− x2
)

,

where

B(x) =
∑

n≥0

(

2n

n

)

xn =
1√

1− 4x
.
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Since B
(

x− x2
)

= 1
1−2x , we obtain Gm(x) = xm(1−x)m

1−2x , which immediately proves (a). After
expansion, and using convolution, we find

Gm(x) = xm

[

m
∑

i=0

(−1)i
(

m

i

)

xi

]





∑

`≥0

2`x`



 =
∑

k≥0





min(m,k)
∑

i=0

(−1)i
(

m

i

)

2k−i



xm+k.

Therefore,

Gm(n) =

min(m,n−m)
∑

i=0

(−1)i
(

m

i

)

2n−m−i.

In particular, for n ≥ 2m,

Gm(n) = 2n−m
m
∑

i=0

(−1)

(

m

i

)

2m−i = 2n−m · (2− 1)m = 2n−m,

which settles (b). To prove (c), we note that for 0 ≤ n < m,

Gm(n+m) =
n
∑

i=0

(−1)i
(

m

i

)

2n−i,

which is clearly a polynomial of degree n in m. Let Gm(n + m) =
∑n

i=0 aim
i. By setting

m = 0, 1, 2, . . . , n− 1 in the two expressions for Gm(n+m), we obtain a linear system of n+1
equations and n+ 1 unknowns. For example, the linear system for n = 3 is

a0 = 8,
a0 + a1 = 4,
a0 + 2a1 + 4a2 = 2,
a0 + 3a1 + 9a2 + 27a3 = 1.

According to Cramer’s Rule, we can express each ai as a ratio of two determinants. The proof
is now complete.

Also solved by Paul S. Bruckman and the proposer.

On a Complex Sequence

H-733 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 51, No. 1, February 2013)

Define the sequence {Hn}n≥−1 given by H−1 = i, H0 = 0, Hn+2 = Hn+1− iHn for n ≥ −1,
where i =

√
−1. Find an explicit formula for

∑n
k=1H

4
k .

Solution by Harris Kwong, SUNY Fredonia, Fredonia, NY.

Since Hk = 0, we could start the summation with k = 0. From Binet’s formula

Hk =
αk − βk

α− β
,

where α = 1+
√

1−4i
2 , and β = 1−

√
1−4i
2 , we find

(α− β)4H4
k = 4α4k − 4α3kβk + 6α2kβ2k − 4αkβ3k + β4k.
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Since αβ = i, we find β2(1− α4) = β2 + α2. Thus,
n
∑

k=0

α4k =
1− α4n+4

1− α4
=

β2(1− α4n+4)

α2 + β2
=

β2 + α4n+2

α2 + β2
.

A similar result holds for the summation of β4k. We deduce that
n
∑

k=0

(α4k + β4k) = 1 +
a4n+2 + β4n+2

α2 + β2
.

In a similar manner, we find β(1− α3β) = β + α = 1. Hence,
n
∑

k=0

α3kβk =
1− α3n+3βn+1

1− α3β
= β(1 − α3n+3βn+1) = β + inα2n+1,

which leads to
n
∑

k=0

(α3kβk + αkβ3k) = 1 + in(α2n+1 + β2n+1).

Finally, we have
n
∑

k=0

α2kβ2k =
1− (αβ)2n+2

1− (αβ)2
=

1 + (−1)n

2
.

Combining these results, along with α−β =
√
1− 4i, and α2+β2 = 1−2i, we determine that

n
∑

k=0

H4
k =

1

(1− 4i)2

[

α4n+2 + β4n+2

1− 2i
− 4in(α2n+1 + β2n+1) + 3(−2)n

]

.

We can simplify the formula by introducing the associated Lucas-type sequence Kn defined
by K−1 = −i, K0 = 2, and Kn+2 = Kn+1 − iKn for n ≥ −1. Then Kn = αn + βn, so that

n
∑

k=0

H4
k =

1

(1− 4i)2

[

1

1− 2i
K4n+2 − 4inK2n+1 + 3(−2)n

]

.

We can also express the formula in terms of Hn, with the help of the formulas

K4n+2 = (α2n+1 − β2n+1)2 + 2(αβ)2n+1 = (1− 4i)H2
2n+1 + 2(−1)ni,

K2n+1 = K2n+2 + iK2n = (1− 4i)(H2
n+1 + iH2

n) + 4in+1.

However, the result is somewhat more complicated, hence is omitted here.

Also solved by Paul S. Bruckman, G. C. Greubel, Zbigniew Jakubczyk, and the
proposer.
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