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PROBLEMS PROPOSED IN THIS ISSUE

H-821 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Prove that
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H-822 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania

Prove the following inequalities:
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H-823 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Given an integer r ≥ 2, define the sequence {Gn}n≥−r+1 by

Gn = Gn−1 +Gn−2 + · · ·+Gn−r for n ≥ 1

with arbitrary G0, G−1, G−2, . . . , G−r+1. For an integer n ≥ 1, prove that
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H-824 Proposed by Hideyuki Ohtsuka, Saitama, Japan

Define the generalized Fibonomial coefficient
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= 0 (otherwise). For positive integers n, r, and s, find closed

form expressions for the sums
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SOLUTIONS

Closed form for the sum of a series

H-787 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 54, No. 2, May 2016)

Prove that
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.

Solution by Brian Bradie

Note
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Also solved by Dmitry Fleischman and the proposer.

186 VOLUME 56, NUMBER 2



ADVANCED PROBLEMS AND SOLUTIONS

The limit of a parametric nested radical

H-788 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 54, No. 2, May 2016)

Given c > 0, determine

lim
n→∞
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Solution by the proposer

We use the identities

(i) F2m = FmLm (see [1] (13));
(ii) L2

m + 5F 2
m = 2L2m (see [1] (22));

(iii) L2m = L2
m − 2(−1)m (see [1] (17c)).

Let
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√
4c+ 5

2
.
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Using this identity repeatedly, we have
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Given any ε ∈ (0, f1), let s = 1− ε/f1. We have
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= s
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where the last inequality holds because 0 < s < 1. Here, we have
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5. Therefore,
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Since s ∈ (0, 1), there exists N > 1 such that for all n > N , we have
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.

Using the above inequality, we have for n > N ,

f1 − ε <

√√√√√
cF 2

2 +

√√√√
cF 2

4 +

√
· · ·+

√
cF 2

2n−1 +
√
cF 2

2n . (3)

By (2) and (3), we obtain
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[1] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Dover 2008.

Partially solved by Dmitry Fleischman.
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Some cyclic inequalities

H-789 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai Stanciu,
Buzău, Romania
(Vol. 54, No. 2, May 2016)

For any real numbers x, y, we denote B(x, y) =
√

x2+xy+y2

3 . Prove that for n ≥ 1, we have

(i)

(
Ln+2 − 3

n

)2
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∑
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n
;

(ii)

(
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∑
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n
,

where for a sequence X := {Xm}m≥1, we use∑
n cyclic

B2(X) = B2(X1, X2) +B2(X2, X3) + · · ·+B2(Xn−1, Xn) +B2(Xn, X1).

Solution by Ángel Plaza

Here we prove (i) since (ii) is analogous. We use that Ln+2 − 3 =
n∑

k=1

Lk and also that

n∑
k=1

L2
k = LnLn+1 − 2. Then, (i) reads as

(i)
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n
.

We will prove the following more general inequalities, which apply to (i) and (ii):
If xk > 0 for k = 1, 2, . . . , n, then(∑n

k=1 xk
n

)2

≤ 1

n

n∑
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3
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k=1 x
2
k

n
. (4)

The left inequality (4) may be written as:∑n
k=1 xk
n

≤

√√√√ 1

n
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3
.

This last inequality follows from the following two arguments:

1)
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2 ≤

√
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3
. This may be checked by simple computations.

2) By the AM-RSM inequality:
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The right inequality (4) may be written as

n∑
k=1 cyclic

x2k + xkxk+1 + x2k+1

3
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2
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which follows by the rearrangement inequality
n∑
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Also solved by Dmitry Fleischman and the proposers.

A series involving harmonic numbers and the zeta function at positive integers

H-790 Proposed by Ovidiu Furdui, Cluj-Napoca, Romania
(Vol. 54, No. 2, May 2016)

Calculate
∞∑
n=2

(
Hn − γ −

ζ(2)

2
− ζ(3)

3
− · · · − ζ(n)

n

)
,

where ζ denotes the Riemann zeta function and Hn = 1 +
1

2
+ · · ·+ 1

n
is the nth harmonic

number.

Solution by Ramya Dutta

Lemma:
∞∑
n=2

ζ(n)− 1

n
= 1− γ.

Proof: Using − log(1− x) =
∞∑
n=1

xn

n
, for x ∈ (−1, 1), we have
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∞∑
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∞∑
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)
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N→∞
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(
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m

)
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N→∞
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since, HN =

N∑
n=1

1

n
= logN + γ +O

(
1
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)
.
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Thus,

∞∑
n=2
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j
−
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=
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∞∑
j=n

ζ(j + 1)− 1

j + 1

=

∞∑
j=2

j∑
n=2

ζ(j + 1)− 1

j + 1
(interchanging order of summation)

=
∞∑
j=1

(
1− 2

j + 1

)
(ζ(j + 1)− 1)

=
∞∑
j=1

(ζ(j + 1)− 1)− 2
∞∑
j=1

ζ(j + 1)− 1

j + 1

= −2 + 2γ +
∞∑
j=1

∞∑
m=2

1

mj+1
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∞∑
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1

m(m− 1)
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Also solved by Dmitry Fleischman and the proposer.
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