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PROBLEMS PROPOSED IN THIS ISSUE
H-821 Proposed by Hideyuki Ohtsuka, Saitama, Japan

Prove that ~
2
™ 41 4 1
g = ngl tan FTL tan

Fn+1

H-822 Proposed by D. M. Batinetu-Giurgiu, Bucharest and Neculai Stanciu,
Buzau, Romania
Prove the following inequalities:
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(d) V2y/1+ FF+ 30 \/F4+1)(F,j}+1+1)>2FnFn+1 for n > 1.

H-823 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Given an integer r > 2, define the sequence {Gy, }n>_r+1 by

Gn=Gp-1+Gp—o+--+GpH—, for n>1
with arbitrary Go,G-1,G_9,...,G_r41. For an integer n > 1, prove that
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H-824 Proposed by Hideyuki Ohtsuka, Saitama, Japan

Define the generalized Fibonomial coefficient " by
Fir

(n) _ FT‘nFT(n—l)Fr(n—Q) T Fr(n—k+1)
k Fir FrkFr(k—l)Fr(k—2) o FT

for 0<k<n,

with (n) =1 and (n) = 0 (otherwise). For positive integers n, r, and s, find closed
0 Fir k Fir

form expressions for the sums
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SOLUTIONS

Closed form for the sum of a series

H-787 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 54, No. 2, May 2016)

Prove that
> 1 7-3V5
; 2P By Fop,,, 2
Solution by Brian Bradie
Note
o By By = 1a2Fn+1 <a2Fn B 1) <a2pn+2 1 )
W, 5 o2Fn a2Fni2
2F, 1
- 5a;7na;Fn+2 (a4Fn B 1)(a4Fn+2 -1
= 5a}1Fn (' — 1) (a2 — 1),
Then,
1 Satfn
2Pt Byp Fop,,,  (afFa —1)(aFer2 — 1)
) )
~ (@ =)t —1) (ot = 1)(afFee - 1)
so that
— i Fop Fop, (a1 — 1) (a2 — 1)  nooo (atfnt1 — 1)(atfn+z — 1)
_ 5. _T-3V5
(a*—1)2 2

Also solved by Dmitry Fleischman and the proposer.
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The limit of a parametric nested radical

H-788 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 54, No. 2, May 2016)
Given ¢ > 0, determine

: 2 2 2 [ [ 2
nh—>Holo cFy + cF4+\/cF8—|— + 1/ cFs,.

Solution by the proposer

We use the identities

(i) Fom = Fp Ly, (see [1] (13));
(i) L2, +5F2 = 2Ly, (see [1] (22));
(iii) Lom = L2, —2(—=1)™ (see [1] (17c)).

Let

. L2n —|—F2n\/4C+ 5

2

fn :
We have

4f2 = (Lgn + Fonv4c +5)% = L3, + 2Lon Fon/Ac + 5 + F(4c + 5)
= 4cF3 + 2Lgn+1 + 2Fyn1v/4c+ 5 (by (i) and (ii))
4(CF22n + fn—i—l)'

Thus, we have

fon= \/ CF22n + fot1-

Using this identity repeatedly, we have

fi = \/cF221+f2:\/cF221+ cFp2+ fy="---
cF3 + CF42—|—\/~--—|—\/CF22n1+\/cF22n—|—fn+1. (1)

By (1), we have
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Given any ¢ € (0, f1), let s =1—¢/f;. We have
fi—e = sh

= S CF2 CF2 \/ \/ on—1 + CF2n+fn+1 (by (1))

= s2cF3 + s4cF42+\/~~+\/ e 10Fn 1+\/32n (cF3 4 fns1)

< \ cF§ +\| cF} + \/ 4 \/cFSM + \/52"(cF§n + fot1),

where the last inequality holds because 0 < s < 1. Here, we have

fnt1 L3, — 2+ FynLon\/4c +5 .
2 = 27, (by (i) and (iii))
1 /Lon\? 1 Ly Ac+5 5+ +/5(c+5
= ey o Vde+5 54 (4c+5) (n — o)
) FL T P 2 2
since limy, o0 Lim/Fm = v/5. Therefore,

cF3. L 1

lim ——=— = lim = >0
n—=oo cF3, + foy1 nooo L+ fu1/(cF3)  2c+ 5+ 1/5(4c+ 5)
Since s € (0, 1), there exists N > 1 such that for all n > N, we have

on CF22n
cF3 + g1
Using the above inequality, we have for n > N,

fi—e<\|cFi+ cFZ—l—\/--'—i-\/cFQQn_l%- cF.. (3)

By (2) and (3), we obtain

V4
lim 4|cF§ +A|cF? + \/ \/CFQ%L cFi = fi = u

n—00 2

[1] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Dover 2008.
Partially solved by Dmitry Fleischman.
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Some cyclic inequalities

H-789 Proposed by D. M. Batinetu-Giurgiu, Bucharest, and Neculai Stanciu,

Buzau, Romania
(Vol. 54, No. 2, May 2016)

For any real numbers z, y, we denote B(x,y) = 1/ w Prove that for n > 1, we have

o (Loso =3\ 1 ) LnLni1 —2
o T) <= B%(L) < ==t =,
<1>( ) <= Y B)< ,

n ) n

n cyclic
o (Fasa— 1\ 1 2 FoFni
/= ) <= B (F) < —————
e EE DGR

n cyclic
where for a sequence X := {X,, };m>1, we use

> B*(X) = B*(X1,X) + B*(X2, X3) + - + BX(Xp_1, Xp) + B*(Xp, X1).

n cyclic
Solution by Angel Plaza

n
Here we prove (i) since (ii) is analogous. We use that L,y2 — 3 = ZLk and also that
k=1

n
ZL2 = L, Lypt+1 — 2. Then, (i) reads as
k=1
2 2 2
(i) <ZZ:1 Lk> < l Zn: Lk + Ly Lpy1 + Lk—i—l < 22:1 L% .
n n . 3 n
k=1 cyclic
We will prove the following more general inequalities, which apply to (i) and (ii):
If . >0 for k=1,2,...,n, then

D1 Tk 2 3 1 U @+ mkmeg + T, - S x? A
=) a2 ; < ==l (4)

k=1 cyclic

The left inequality (4) may be written as:

n 2 2
271;021 Tk < 1 Z Ty + TpTr41 + Thi1
n 3 '

n .
k=1 cyclic

This last inequality follows from the following two arguments:

2 2
Ty + Tpx +x
1) W# < k i k;l F+L This may be checked by simple computations.
2) By the AM-RSM inequality:

2 2
n n ThHORTh T Ty n 2 5
> k=1 Tk < D k=1 cyclic \/i < 1 Z Tp + TpTr41 + Thyq

n - n 3

n .
k=1 cyclic
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The right inequality (4) may be written as

n 2 2 n
Ty + TpTr1 + T 9
5 3 < E Tks or
k=1 cyclic k=1
n n
2
2 g TE + E TpTht1 .
k=1 k=1 cyclic 2
3 S E xk;)
k=1

n n
which follows by the rearrangement inequality Z TpTrpy1 < Zwi
k=1 cyclic k=1

Also solved by Dmitry Fleischman and the proposers.

A series involving harmonic numbers and the zeta function at positive integers

H-790 Proposed by Ovidiu Furdui, Cluj-Napoca, Romania
(Vol. 54, No. 2, May 2016)

Calculate
HZ:2<H"_7_2_3_ _n>’

1
where ¢ denotes the Riemann zeta function and H, = 1+ 3 + .-+ — is the nth harmonic
n

number.

Solution by Ramya Dutta

Lemma:
oo
-1
yemat
n=2 n
o l‘n
Proof: Using —log(1 —z) = Z —, for x € (—1,1), we have
n
n=1
o o (e.9] o0
-1 1 1 1
Z%: _ (_10g<1_>_)
n=2 n n=2m=2 nim m=2 m m
N
1 1
= lim (—log (1 — > — >
N—o0 m m
—
Al 1
N — — R
Ngnool Hy —log H <1 m>
m=2
= lim 1-Hy+logN =1—7
N—oo
N 4 .
T S
n—=

190 VOLUME 56, NUMBER 2



ADVANCED PROBLEMS AND SOLUTIONS

Thus,
> “~ ¢(4) =) 1 =) -1
Hn_'}’_ — | = - - .
e+ -1
_nQJ; j+1

j=1 7j=1 ‘7+1
o0 o0 1
:_2+2’7+sz]+1
j=1 m=2
> 1
:—2+2’7+Z ( 71)227—1
m=

Also solved by Dmitry Fleischman and the proposer.
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