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PROBLEMS PROPOSED IN THIS ISSUE

H-837 Proposed by Robert Frontczak, Stuttgart, Germany
The Tribonacci numbers {Tn}n≥0 satisfy T0 = 0, T1 = T2 = 1, and Tn = Tn−1+Tn−2+

Tn−3 for all n ≥ 3. Prove that for any n ≥ 1
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H-838 Proposed by Sergio Falcón and Ángel Plaza, Gran Canaria, Spain
Find a closed form expression for the following sum, where r > 1 and n ≥ r are

integers
n−r
∑

j=0

((

r + j

r

)

−
(

r + j − 1

r

)

−
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r + j − 2

r

))

Ln−(n+j).

H-839 Proposed by Sergio Falcón and Ángel Plaza, Gran Canaria, Spain
For a positive integer k, the k-Fibonacci hyperbolic sine and cosine functions are

defined respectively by

sFkh(x) =
σx
k − σ−x

k

σk + σ−1
k

, cFkh(x) =
σx
k + σ−x

k

σk + σ−1
k

,

where σk = (k +
√
k2 + 4)/2. If the k-Fibonacci hyperbolic tangent and cotangent

are respectively tFkh(x) =
sFkh(x)

cFkh(x)
and ctFkh(x) = (tFkh(x))

−1, find a closed form
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expression for the following sum
∞
∑

r=1

1

2r
tFkh

( x

2r

)

.

H-840 Proposed by Arkady Alt, San Jose, California
Prove that (n− 1)(n+ 1)(2nFn+1 − (n+ 6)Fn) is divisible by 150 for all n ≥ 1.

H-841 Proposed by Hideyuki Ohtsuka, Saitama, Japan
For any integer n ≥ 2, prove that

n
∑

j=1

Laj <
Ln+an

Ln − 1

for any integer sequence {am}m≥1 with a1 ≥ 1 and am+1 ≥ am + 2m+ 1 for all m ≥ 1.

SOLUTIONS

An application of Jensen’s inequality

H-805 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania (Vol. 55, No. 2, May 2017)

Prove that if n ≥ 2, p ≥ 1 are integers and m ≥ 0, xk > 0 are real numbers for
k = 1, . . . , n, then putting Xn =

∑n
k=1 xk, we have the inequality

n
∑

k=1

(FpXn + Fp+1xk)
m+1

(F 2
p+1Xn − F 2

p xk)2m+1
≥ (nFp + Fp+1)

m+1nm+1

(nF 2
p+1 − F 2

p )
2m+1Xm

n

.

Solution by Ángel Plaza, Gran Canaria, Spain

The solution follows straightforwardly by Jensen’s inequality.
First, note that the proposed inequality is homogeneous, so we may assume that

0 < xk < 1 for k = 1, . . . , n, with Xn =
∑n

k=1 xk = 1. If, in addition, we write α = Fp

and β = Fp+1, the given inequality reads as
n
∑

k=1

(α+ βxk)
m+1

(β2 − α2xk)2m+1
≥ (nα + β)m+1nm+1

(nβ2 − α2)2m+1
.

Let f(x) defined by f(x) =
(α + βx)m+1

(β2 − α2x)2m+1
. Then

f ′′(x) = (m+ 1)
(α + βx)m−1

(β2 − α2x)2m+3 · P,

where P = α6(4m+2)+2α5β(2m+1)x+α4β2mx2+2α3β3(2m+1)+2α2β4(m+1)x+β6m.
Since β ≥ α, f ′′(x) > 0 for x ∈ (0, 1) and f is convex. By Jensen’s inequality, the
problem follows.

Also solved by Dmitry Fleischman, Dmitriy Shtefan and Irina Dobrovolska
(jointly), and the proposers.
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An identity involving Tribonacci numbers

H-806 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 55, No. 2, May 2017)

The two sequences {Tn}n∈Z and {Sn}n∈Z satisfy

Tn+3 = Tn+2 + Tn+1 + Tn with T0 = 0, T1 = T2 = 1,

Sn+3 = Sn+2 + Sn+1 + Sn with S0 = 3, S1 = 1, S2 = 3

for all integers n. For n ≥ 0, prove that
n
∑

k=0

T(−2)kS(−2)k = T2(−2)n .

Solution by the proposer

In [1], Howard showed that

Tn+2a = SaTn+a − S−aTn + Tn−a.

Putting n = (−2)k and a = −(−2)k in the above identity, we have

T−(−2)k = −S(−2)kT(−2)k + T2(−2)k .

That is,
T(−2)kS(−2)k = T2(−2)k − T2(−2)k−1 .

Using this identity, we have
n
∑

k=0

T(−2)kS(−2)k =

n
∑

k=0

(T2(−2)k − T2(−2)k−1) = T2(−2)n − T−1 = T2(−2)n .

[1] F. T. Howard, A Tribonacci identity, The Fibonacci Quarterly, 39.4 (2001), 352–
357.

Also solved by Brian Bradie, Kenneth B. Davenport, Dmitry Fleischman,
and Raphael Schumacher.

Identities with sums of Euler and number of squarefree divisors functions

H-807 Proposed by Mehtaab Sawhney, Commack, NY
(Vol. 55, No. 2, May 2017)

Prove for positive integers n that
n
∑

i=1

⌊n

i

⌋

i
∑

j=1

µ(gcd(i, j)) =
n
∑

k=1

φ(k),

and
n
∑

i=1

n
∑

j=1

µ(gcd(i, j))

⌊√

n

ij

⌋

=

n
∑

k=1

2ω(k).
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Solution by the proposer

Let S be the set of integral points (x, y) with 1 ≤ y ≤ x ≤ n, and gcd(x, y) = 1. The
key to the proof of the first identity is to demonstrate

n
∑

i=1

⌊

n

i

⌋ i
∑

j=1

µ(gcd(i, j)) = |S| =
n
∑

k=1

φ(k).

Notice that for y = i there are φ(i) possible y-coordinates such that gcd(x, y) = 1.
However, it is also possible to consider any point (x, y) with 1 ≤ y ≤ x ≤ n. Suppose
that (x, y) lies on the ray k〈i, j〉 with 1 ≤ j ≤ i ≤ n. Then, notice that there are ⌊n

i
⌋

points that lie in 1 ≤ x ≤ y ≤ n on the ray k〈i, j〉 with k ∈ Z
+. However, using

∑

d| gcd(x,y)

µ(d) = 0

if gcd(x, y) 6= 1 and that µ(1) = 1, it follows that the left side also counts the number
of points such that 1 ≤ y ≤ x ≤ n, and gcd(x, y) = 1. The result follows accordingly.
Let T be the set of integral points (x, y) with 1 ≤ y ≤ n, 1 ≤ x ≤ n, 1 ≤ xy ≤ n, and
gcd(x, y) = 1. The key to the proof of the second identity is to demonstrate

n
∑

i=1

n
∑

j=1

µ(gcd(i, j))

⌊√

n

ij

⌋

= |T | =
n
∑

k=1

2ω(k).

Notice that for xy = i ≤ n and 1 ≤ y ≤ n, 1 ≤ x ≤ n there are 2ω(i) points (assign
each prime factor independently) such that gcd(x, y) = 1. However, it is also possible
to consider any point (x, y) with 1 ≤ y ≤ n, 1 ≤ x ≤ n. Consider the points that lie on
the ray k〈i, j〉 with 1 ≤ i ≤ n and 1 ≤ j ≤ n and k ∈ R

+. The intersection of this ray

and the curve xy = n is at distance

√

n(i2 + j2)

ij
from the origin. Therefore, there are

⌊√

n

ij

⌋

positive integral points along this ray. However, using

∑

d| gcd(x,y)

µ(d) = 0

if gcd(x, y) 6= 1, it follows that the left side sum only accounts for the points (x, y)
with 1 ≤ y ≤ n, 1 ≤ x ≤ n, xy ≤ n, and gcd(x, y) = 1. The second identity follows
accordingly.

Also solved by Jean-Marie De Koninck, Dmitry Fleischman, and Raphael
Schumacher.
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An identity with binomial coefficients

H-808 Proposed by Mehtaab Sawhney, Commack, NY
(Vol. 55, No. 2, May 2017)

Prove that

⌊n/2⌋
∑

j=0

(

n

j, j, n− 2j

)

=

⌊n/2⌋
∑

i=0

(−1)i
(

n

i

)(

2n− 1− 3i

n− 1

)

.

Solution by Dmitriy Shtefan and Irina Dobrovolska, Zaporizhzhya, Ukraine

Let us consider the following expansion

(1 + x+ x2)n =
2n
∑

l=0

alx
l. (1)

According to the multinomial theorem, we have

(1 + x+ x2)n =
∑

i+j+k=n

(

n

i, j, k

)

1ixjx2k. (2)

Now, we focus on a term from (1) with l = n, and calculate an. It can be expressed
easily through the multinomials coefficients from (2). It is clear that only terms with
j + 2k = n (or, equivalently, k = i) contribute to an, and we find

an =

[n/2]
∑

j=0

(

n

j, j, n− 2j

)

. (3)

On the other hand, applying the Maclaurin expansion to both sides of the expression

1 + x+ x2 =
x3 − 1

x− 1
, (4)

we obtain

(

x3 − 1

x− 1

)n

= (1− x3)n(1− x)−n

=

n
∑

i=0

(−1)ix3i

(

n

i

) ∞
∑

j=0

(−1)jxj

(−n

j

)

.

(5)
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Note, that for calculating the coefficient an it is necessary that 3i+ j = n. Also, taking
into account that

(

n
k

)

= 0 if n > 0, k > 0, k > n, we obtain

an =

n
∑

i=0

(−1)i
(

n

i

)

(−1)n−3i

( −n

n− 3i

)

=
n
∑

i=0

(−1)i
(

n

i

)

(−1)2(n−3i) (2n− 3i− 1)!

(n− 3i)!(n− 1)!

=

[n/2]
∑

i=0

(−1)i
(

n

i

)(

2n− 1− 3i

n− 1

)

.

(6)

Therefore, using the identities (3) and (6), we obtain that

[n/2]
∑

j=0

(

n

j, j, n− 2j

)

=

[n/2]
∑

i=0

(−1)i
(

n

i

)(

2n− 1− 3i

n− 1

)

,

which is what we wanted to prove.

Also solved by the proposer.

Evaluating an infinite product

H-809 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 55, No. 3, August 2017)

Prove that
(

1− α

L2

)(

1− β

L22

)(

1− α

L23

)(

1− β

L24

)

· · · = 7
√
5− 5

22
.

Solution by David Terr, Oceanside, California

Define the sequence (pn)n≥0 as follows:

p2m =
7
√
5 + 5

10

m
∏

k=1

(

1− α

L2k−1

)(

1− β

L2k

)

;

p2m+1 =

(

1− α

L2m+1

)

p2m.

Since
(

7
√
5 + 5

10

)(

7
√
5− 5

22

)

= 1,

we see that the desired limit is equivalent to

lim
n→∞

pn = 1. (7)
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We will prove (7) and therefore the desired limit by first proving the following formula
for pn:

pn =
1

2
√
5

(

2L2n+1 + 1 + (−1)n
√
5

F2n+1

)

. (8)

To see that (7) follows from (8) note that (8) implies that

lim
n→∞

pn =
1√
5

lim
n→∞

L2n+1

F2n+1

= 1.

Thus, it suffices to prove (8). We prove this formula by induction. Checking the case
n = 0 is straightforward. For the induction step, we consider two cases, n odd and n
even. First, consider the case in which n is odd, that is n = 2m − 1 for some m ≥ 1.
Here, we have

pn+1 = p2m =

(

1− β

L22m

)

p2m−1 =
1

2
√
5

(

1− β

L22m

)

(

2L22m + 1−
√
5

F22m

)

=
1

2
√
5

(

2L22m − 1 +
√
5

2L22m

)(

2L22m + 1−
√
5

F22m

)

=
1

4
√
5

(

4L2
22m − (1−

√
5)2

F22m+1

)

=
1

4
√
5

(

4L22m+1 + 8− 6 + 2
√
5

F22m+1

)

=
1

2
√
5

(

2L22m+1 + 1 +
√
5

F22m+1

)

=
1

2
√
5

(

2L2n+2 + 1 + (−1)n+1
√
5

F2n+2

)

,

which verifies (8) for n + 1. Finally, we consider the case when n is even, which is
n = 2m for some integer m ≥ 1. Here, we have

pn+1 = p2m+1 =

(

1− α

L22m+1

)

p2m =
1

2
√
5

(

1− α

L22m+1

)

(

2L22m+1 + 1 +
√
5

F22m+1

)

=
1

2
√
5

(

2L22m+1 − 1−
√
5

2L22m+1

)(

2L22m+1 + 1 +
√
5

F22m+1

)

=
1

4
√
5

(

4L2
22m+1 − (1 +

√
5)2

F22m+2

)

=
1

4
√
5

(

4L22m+2 + 8− 6− 2
√
5

F22m+2

)

=
1

2
√
5

(

2L22m+2 + 1−
√
5

F22m+2

)

=
1

2
√
5

(

2L2n+2 + 1 + (−1)n+1
√
5

F2n+2

)

,

again verifying (8) for n + 1. This completes the proof of (8), therefore of the desired
limit.
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Also solved by Raphael Schumacher and the proposer.

Errata: At Advanced Problem H-829 (Vol. 56, No. 4, November 2018) the
recurrence for {Fk,n}n≥0 should be “Fk,n+1 = kFk,n + Fk,n−1” instead of “Fk,n+1 =
Fk,n + Fk,n−1”. The editor apologizes for the inconvenience.
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