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PROBLEMS PROPOSED IN THIS ISSUE

H-854 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, Romania and Neculai
Stanciu, Buzău, Romania

Compute

lim
n→∞

 lim
x→∞

(
(f(x+ 1))

Ln
(x+1)Fn+1 − (f(x))

Ln
xLn+1

)Ln−1
Ln+1

 ,

where f : R∗ 7→ R∗ is a function that satisfies limx→∞ f(x+ 1)/(xf(x)) = a ∈ R∗.

H-855 Proposed by Robert Frontczak, Stuttgart, Germany
Let (Tn)n≥0 be the sequence of Tribonacci numbers given by T0 = 0, T1 = T2 = 1, and

Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3. Define the functions

GFT (z) =
∞∑
n=0

FnTnz
n and GLT (z) =

∞∑
n=0

LnTnz
n.

Show that for k ≥ 1, we have

GFT (2−2k) =
24k(26k − 22k − 1)

212k − 210k − 28k+2 − 26k+2 − 26k − 24k+1 + 22k − 1

and

GLT (2−2k) =
24k(26k + 24k+1 + 22k + 3)

212k − 210k − 28k+2 − 26k+2 − 26k − 24k+1 + 22k − 1
.

H-856 Proposed by Robert Frontczak, Stuttgart, Germany
Let Tn denote the nth triangular number; i.e., Tn = n(n+ 1)/2. Show that

∞∑
n=0

Tn ·
Fn

2n+2
= F7 and

∞∑
n=0

Tn ·
Ln

2n+2
= L7.

MAY 2020 185



THE FIBONACCI QUARTERLY

H-857 Proposed by T. Goy, Ivano-Frankivsk, Ukraine
Let Tn be the nth Tribonacci number given by T0 = T1 = 0, T2 = 1, and for n ≥ 3,

Tn = Tn−1 + Tn−2 + Tn−3. For all n ≥ 2, prove that

Fn−2 =
n−1∑
i=1

(−1)i−1
∑

s1+···+si=n

Ts1−1Ts2−1 · · ·Tsi−1.

SOLUTIONS

A formula for π2 involving Fibonacci numbers

H-821 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 56, No. 2, May 2018)

Prove that
π2

8
=

∞∑
n=1

tan−1
1

Fn
tan−1

1

Fn+1
.

Solution by Jason L. Smith, Richland Community College, Decatur, Ill.

Note this inverse tangent identity among Fibonacci numbers [1]:

tan−1
(

1

F2m

)
= tan−1

(
1

F2m+1

)
+ tan−1

(
1

F2m+2

)
.

For brevity, denote the sum to be evaluated by S and use tn := tan−1(1/Fn), so that S =∑
n≥1 tntn+1. Reindex the sum as

S = t1t2 +
∑
m≥1

(t2mt2m+1 + t2m+1t2m+2) = t1t2 +
∑
m≥1

t2m+1(t2m + t2m+2).

Using the arctangent identity above, we can replace the odd-indexed factor inside the summa-
tion with t2m+1 = t2m − t2m+2, so

S = t1t2 +
∑
m≥1

(t2m − t2m+2)(t2m + t2m+2) = t1t2 +
∑
m≥1

(t22m − t22m+2).

The above summation is telescopic in which only the m = 1 term survives. Therefore,

S = t1t2 + t22 = tan−1
(

1

F1

)
tan−1

(
1

F2

)
+

(
tan−1

(
1

F2

))2

= 2(tan−1(1))2 =
π2

8
.

[1] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Dover, 2008, 37.

Also solved by Brian Bradie, Pridon Davlianidze, Dmitry Fleischman, Raphael
Schumacher, and the proposer.
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Some inequalities with Fibonacci numbers

H-822 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania (Vol. 56, No. 2, May 2018)

Prove the following inequalities:

(a)
FnF

2
n+2

Fn+3
+
Fn+1F

2
n+3

Fn + Fn+2
+ (Fn + Fn+2)

2 > 2
√

6
√
FnFn+1Fn+2;

(b) F 2
n+2 + (Fn + Fn+2)

2 + F 2
n+3 > 4

√
6
√
FnFn+1Fn+2;

(c) L2
n+2 + (Ln + Ln+2)

2 + L2
n+3 > 4

√
6
√
LnLn+1Ln+2;

(d)
√

2
√

1 + F 4
n +

∑n−1
k=1

√
(F 4

k + 1)(F 4
k+1 + 1) > 2FnFn+1 for n > 1.

Solution by Wei-Kai Lai, University of South Carolina Salkehatchie, Walterboro,
S.C.

(a) Applying Fn+2 = Fn + Fn+1 and Fn+3 = Fn + 2Fn+1, we can rewrite the claimed
inequality as:

Fn(Fn + Fn+1)
2

Fn + 2Fn+1
+
Fn+1(Fn + 2Fn+1)

2

2Fn + Fn+1
+ (2Fn + Fn+1)

2 > 2
√

6
√
FnFn+1(Fn + Fn+1).

To make the calculation easier, we let a := Fn, b := Fn+1. So, the above inequality becomes

a(a+ b)2

a+ 2b
+
b(a+ 2b)2

2a+ b
+ (2a+ b)2 > 2

√
6
√
ab(a+ b).

Multiplying by (a+ 2b)(2a+ b) and expanding all products, we get

5a4 + 17a3b+ 20a2b2 + 13ab3 + 5b4 >
√

6
√
ab(2a3 + 7a2b+ 7ab2 + 2b3).

After squaring both sides, we get

25a8 + 170a7b+ 489a6b2 + 810a5b3 + 892a4b4 + 690a3b5 + 369a2b6 + 130ab7 + 25b8

> 24a7b+ 168a6b2 + 462a5b3 + 636a4b4 + 462a3b5 + 168a2b6 + 24ab7,

which is clearly true.

(b) Let a := Fn, b := Fn+1, c := Fn+2, and d := Fn+3. We want to prove that

c2 + (a+ c)2 + d2 > 4
√

6
√
abc.

Since d = b+ c, we have c2 + (a+ c)2 + d2 = a2 + b2 + 3c2 + 2ac+ 2bc. Inserting c = a+ b into
the products ac and bc, we have

a2 + b2 + 3c2 + 2ac+ 2bc = 3a2 + 3b2 + 3c2 + 4ab.

Applying the AM-GM inequality twice, we get

3a2 + 3b2 + 3c2 + 4ab ≥ 3c2 + 3(36)1/3(ab) ≥ 64/3
√
abc.

It is easy to check that 64/3 > 4
√

6. Therefore, we have proved the claimed inequality.

(c) The proof in (b) is still valid if a := Ln, b := Ln+1, c := Ln+2, and d := Ln+3.

(d) Since F1 = 1, we may rewrite the claimed inequality as a cyclic form:√
(F 4

1 + 1)(F 4
2 + 1) + · · ·+

√
(F 4

n−1 + 1)(F 4
n + 1) +

√
(F 4

n + 1)(F 4
1 + 1) > 2FnFn+1.
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Because the square mean (SM) is greater than or equal to the arithmetic mean (AM), we have√
(F 4

1 + 1)(F 4
2 + 1) + · · ·+

√
(F 4

n−1 + 1)(F 4
n + 1) +

√
(F 4

n + 1)(F 4
1 + 1)

≥ (F 2
1 + 1)(F 2

2 + 1)

2
+ · · ·+

(F 2
n−1 + 1)(F 2

n + 1)

2
+

(F 2
n + 1)(F 2

1 + 1)

2
.

We therefore only need to prove that

(F 2
1 + 1)(F 2

2 + 1) + · · ·+ (F 2
n−1 + 1)(F 2

n + 1) + (F 2
n + 1)(F 2

1 + 1) > 4FnFn+1.

Since FnFn+1 =
∑n

i=1 F
2
i , the above inequality is equivalent to

(F 2
1F

2
2 + 1) + · · ·+ (F 2

n−1F
2
n + 1) + (F 2

nF
2
1 + 1) > 2

n∑
i=1

F 2
i .

However, the above inequality can be transformed into

(F 2
1F

2
2 − F 2

1 − F 2
2 + 1) + · · ·+ (F 2

n−1F
2
n − F 2

n−1 − F 2
n − 1) + (F 2

nF
2
1 − F 2

n − F 2
1 + 1)

= (F 2
1 − 1(F 2

2 − 1) + · · ·+ (F 2
n−1 − 1)(F 2

n − 1) + (F 2
n − 1)(F 2

1 − 1) > 0.

The proof is then complete. Note that the equality does not occur in either of the above
inequalities or in the SM-AM inequality for n ≥ 3.

Also solved by Kenneth B. Davenport, Dmitry Fleichman, and the proposers.

Some summation formulas with general recurrences

H-823 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 56, No. 2, May 2018)

Given an integer r ≥ 2, define the sequence {Gn}n≥−r+1 by

Gn = Gn−1 +Gn−2 + · · ·+Gn−r for n ≥ 1

with arbitrary G0, G−1, G−2, . . ., G−r+1. For an integer n ≥ 1, prove that

(i)

n∑
k=1

GkGk+r =

r∑
k=1

k(r − k − 1) + r + 1

2(r − 1)

k∑
i=1

(Gn+i−kGn+i −Gi−kGi);

(ii)
n∑

k=1

GkGk+r+1 =
r∑

k=1

k(r − k − 1) + 2r

2(r − 1)

k∑
i=1

(Gn+i−kGn+i −Gi−kGi).

Solution by the proposer

Let Sm :=
∑n

k=1GkGk+m and Ak :=
∑k

i=1(Gn+i−kGn+i −Gi−kGi). We use the identity

S0 =

r∑
k=1

k(r − k − 1) + 2

2(r − 1)
Ak (see [1]).

For m ≥ 0, since

2Gm = Gm +Gm−1 + · · ·+Gm−r+1 +Gm−r = Gm+1 +Gm−r,

we have

2Sm = Sm+1 + Sm−r. (1)
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For 1 ≤ k ≤ r, we have

Sk − S−k =
n∑

i=1

(GiGi+k −Gi−kGi) =
k∑

i=1

(Gn+i−kGn+i −Gi−kGi) = Ak. (2)

(i) We have

Sr = S0 +
r∑

k=1

(Sk − Sk−1) = S0 +
1

2

r∑
k=1

(Sk − Sk−1−r) (by (1))

= S0 +
1

2

r∑
k=1

(Sk − S−k) =

r∑
k=1

k(r − k − 1) + 2

2(r − 1)
Ak +

1

2

r∑
k=1

Ak (by (2))

=

r∑
k=1

k(r − k − 1) + r + 1

2(r − 1)
Ak.

(ii) We have

Sr+1 = 2Sr − S0 (by (1))

= 2

r∑
k=1

k(r − k − 1) + r + 1

2(r − 1)
Ak −

r∑
k=1

k(r − k − 1) + 2

2(r − 1)
Ak

=

r∑
k=1

k(r − k − 1) + 2r

2(r − 1)
Ak.

[1] Hideyuki Ohtsuka, Sums of squares of members of r-generalized Fibonacci like sequences
(solution to Advanced Problem H-759), The Fibonacci Quarterly, 54.3 (2016), 281–282.

Also solved by Dmitry Fleischman.

Identities with generalized Fibonomial coefficients

H-824 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 56, No. 2, May 2018)

Define the generalized Fibonomial coefficient
(
n
k

)
F ;r

by(
n

k

)
F ;r

=
FrnFr(n−1)Fr(n−2) · · ·Fr(n−k+1)

FrkFr(k−1)Fr(k−2) · · ·Fr
for 0 < k ≤ n,

with
(
n
0

)
F ;r

= 1 and
(
n
k

)
F ;r

= 0 (otherwise). For positive integers n, r, and s, find closed form

expressions for the sums

(i)
∑

i+j=2s−1
(−1)(r+1)i

(
n− 1

i

)
F ;r

(
n+ 1

j

)
F ;r

;

(ii)
∑

i+j=2s

(−1)i
(
n− 1

i

)
F ;r

(
n+ 1

j

)
F ;r

.
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Solution by the proposer

Let m, n, r, and s be positive integers. We use the identity

n∑
k=0

(−1)
rk(k+1)

2
+mk

(
n

k

)
F ;r

zk =

n∏
k=1

(
1 + (−1)mαr(n−k+1)βrkz

)
(see [1]).

We have

2n∑
l=0

∑
i+j=l

(1−)
r
2
(i2+i+j2+j)+i+j+rj

(
n+ 1

i

)
F ;r

(
n− 1

j

)
F ;r

 zl

=

(
n+1∑
i=0

(−1)
ri(i+1)

2
+i

(
n+ 1

i

)
F ;r

zi

)n−1∑
j=0

(−1)
rj(j+1)

2
+rj

(
n− 1

j

)
F ;r

zj


=

n+1∏
k=1

(
1− αr(n−k+2)βrkz

) n−1∏
k=1

(
1 + (−1)rαr(n−k)βrkz

)
=

n∏
k=0

(
1− αr(n−k+1)βr(k+1)z

) n−1∏
k=1

(
1 + (−1)rαr(n−k)βrkz

)
=

n∏
k=0

(
1− (−1)rαr(n−k)βrkz

) n−1∏
k=1

(
1 + (−1)rαr(n−k)βrkz

)
= (1− (−1)rαrnz) (1− (−1)rβrnz)

n−1∏
k=1

(
1− α2r(n−k)β2rkz2

)
=

(
1− (−1)rLrnz + (−1)rnz2

) n−1∑
k=0

(
n− 1

k

)
F ;2r

z2k (3)

(by αβ = −1 and Lrn = αrn + βrn).
(i) In (3), by comparing the coefficient of z2s−1, we have∑

i+j=2s−1
(−1)

r
2
(i2+i+j2+j)+i+j+rj

(
n+ 1

i

)
F ;r

(
n− 1

j

)
F ;r

= (−1)r+sLrn

(
n− 1

s− 1

)
F ;2r

.

By j = 2s− 1− i, we have

(−1)
r
2
(i2+i+j2+j)+i+rj+r+s = (−1)ri

2+i+rs+s−2rsi+2rs2 = (−1)(r+1)i+(r+1)s.

Therefore, we obtain∑
i+j=2s−1

(−1)(r+1)i

(
n+ 1

i

)
F ;r

(
n− 1

j

)
F ;r

= (−1)(r+1)sLrn

(
n− 1

s− 1

)
F ;2r

.

(ii) In (3), by comparing the coefficient of z2s, we have∑
i+j=2s

(−1)
r
2
(i2+i+j2+j)+i+rj

(
n+ 1

i

)
F ;r

(
n− 1

j

)
F ;r

= (−1)s
(
n− 1

s

)
F ;2r

− (−1)rn+s

(
n− 1

s− 1

)
F ;2r

.
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By j = 2s− i, we have

(−1)
r
2
(i2+i+j2+j)+i+rj = (−1)i+ri2−ri+3rs−2rsi+2rs2 = (−1)i+rs.

Therefore, we obtain∑
i+j=2s

(−1)i
(
n− 1

i

)
F ;r

(
n+ 1

j

)
F ;r

= (−1)(r+1)s

((
n− 1

s

)
F ;2r

− (−1)rn
(
n− 1

s− 1

)
F ;2r

)
.

[1] Hideyuki Ohtsuka, An identity with Fibonomial coefficients (solution to Advanced Prob-
lem H-746), The Fibonacci Quarterly, 53.3 (2015), 283–285.

Also solved by Dmitry Fleischman.

Errata: There are some typos in the Advanced Problem Section of Volume 58 Number 1,
February 2020, Pages 89–95 as follows:

(i) Page 89, Line -1: The exponent “1−(n−k)−1” in “21−(n−k)−1” should be “1−(n−k)”.
Also, the two occurrences of “Brn” from lines -2 and -5 (right) at this page should be
“Frn”.

(ii) Page 90, Lines 4-5: In the left sides of (i) and (ii), the denominators should be under
a square root “

√
...”.

(iii) Page 92, Line 10: The numerator “Fn+4 − Fn+1” should be “Fn+1 − Fn”.
(iv) Page 94, Line 7: The expression “F − nb” should be “F b

n”.

The Editor apologizes for these typos.
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