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PROBLEMS PROPOSED IN THIS ISSUE

H-873 Proposed by Robert Frontczak, Stuttgart, Germany
Let (Tn)n≥0 be the Tribonacci sequence defined by Tn+3 = Tn+2 + Tn+1 + Tn for all n ≥ 0

with T0 = 0, T1 = T2 = 1. Prove the following identities valid for all n ≥ 2:

(i)

Tn = (−1)n+1Fn + 2(−1)nFn−1 +

n−2∑

k=0

(−1)k+1Fk(2Tn−k + Tn−2−k).

(ii)
∑

1≤i<j≤n

(Fj − Fi)(Tn−j − Tn−i) = n(Tn+2 − Fn+2)−
1

2
(Fn+2 − 1)(Tn+1 + Tn−1 − 1).

(iii)
∑

1≤i<j≤n

(Lj−Li)(Tn−j−Tn−i) = n(2Tn+3−Tn+2−2Tn−Ln+2)−
1

2
(Ln+2−3)(Tn+1+Tn−1−1).

H-874 Proposed by Robert Frontczak, Stuttgart, Germany

Let Cn be the nth Catalan number; i.e., Cn =
1

n+ 1

(
2n

n

)

, and α be the golden section.

Prove that
∞∑

n=1

F2n

n(n+ 1)Cn

= α−2
∞∑

n=1

L2n

n(n+ 1)Cn

= 2π

√
α

25
√
5
.
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H-875 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, Romania, and Neculai
Stanciu, Buzău, Romania

Let ABC be a triangle with a, b, c the lengths of the sides, R the length of the circumradius,
r the length of the inradius, and s the semiperimeter. Prove that
(
F 2
na

2 + F 2
n+1b

2

c

)2

+

(
F 2
nb

2 + F 2
n+1c

2

a

)2

+

(
F 2
nc

2 + F 2
n+1a

2

b

)2

≥ 2F 2
2n+1(s

2 − r2 − 4Rr)

holds for all n ≥ 0.

H-876 Proposed by I. V. Fedak, Ivano-Frankivsk, Ukraine
For all positive integers n, prove that

Fn+2 ≥
√

FnFn+1 + 1

n+ 1
+n n+1

√

F1F2 · · ·Fn; Ln+2 ≥
√

LnLn+1 + 1

n+ 3
+(n+2) n+3

√

L1L2 · · ·Ln.

H-877 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Given an even integer r and an integer n ≥ 0, prove that

n∑

k=0

(
2n− k

n

)

Lk
rLr(k+1) = L2n+1

r .

SOLUTIONS

A series with k-Fibonacci hyperbolic tangent terms

H-839 Proposed by Sergio Falcón and Ángel Plaza, Gran Canaria, Spain
(Vol. 57, No. 2, May 2019)

For a positive integer k, the k-Fibonacci hyperbolic sine and cosine functions are defined
respectively by

sFkh(x) =
σx
k − σ−x

k

σk + σ−1
k

, cFkh(x) =
σx
k + σ−x

k

σk + σ−1
k

,

where σk = (k+
√
k2 + 4)/2. If the k-Fibonacci hyperbolic tangent and cotangent are respec-

tively tFkh(x) =
sFkh(x)

cFkh(x)
and ctFkh(x) = (tFkh(x))

−1, find a closed form expression for the

following sum
∞∑

r=1

1

2r
tFkh

( x

2r

)

.

Solution by the proposers

If x = 0, then the sum is 0. If a 6= 0, then from the identity tFkha = 2ctFkh(2a)− ctFkha,
we obtain

tFkh
( x

2r

)

= 2ctFkh
( x

2r−1

)

− ctFkh
( x

2r

)

.

Hence,

N∑

r=1

1

2r
tFkh

( x

2r

)

=
N∑

r=1

1

2r

(

2ctFkh
( x

2r−1

)

− ctFkh
( x

2r

))

= ctFkh(x)−
1

2N
ctFkh

( x

2N

)
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by telescoping. Now

1

2N
ctFkh

( x

2N

)

=
cFkh(x/2

N )

x
· x/2N

sFkh(x/2N )
→ cFkh(0)

x
· 1

cFkh(0) ln σk
=

1

x lnσk

as N → ∞, because

sFkh(y) =
2

σk + σ−1
k

sinh(y lnσk) = cFkh(0) sinh(y lnσk)

(with y = x/2N ). Therefore,

∞∑

r=1

1

2r
tFkh

( x

2r

)

= ctFkh(x)−
1

x lnσk
.

Also solved by Brian Bradie, Irina Dobrovolska and Dmitriy Shtefan (jointly),
Dmitry Fleischman, and David Terr.

A multiple of 150

H-840 Proposed by Arkady Alt, San Jose, California
(Vol. 57, No. 2, May 2019)

Prove that (n− 1)(n + 1)(2nFn+1 − (n + 6)Fn) is divisible by 150 for all n ≥ 1.

Solution by Hideyuki Ohtsuka, Saitama, Japan

We have

4Fn−2 + 3Fn−3 = 3Fn−1 + Fn−2 = Fn + 2Fn−1 = 2Fn+1 − Fn (1)

and

2Fn−2 + Fn−3 = Fn−1 + Fn−2 = Fn. (2)

We have

(4n3 − 12n2 − 4n + 12)Fn−2 + (3n3 − 6n2 − 3n+ 6)Fn−3

= (n− 1)(n + 1)((4Fn−2 + 3Fn−3)n− 6(2Fn−2 + Fn−3))

= (n− 1)(n + 1)((2Fn+1 − Fn)n− 6Fn) (by 1 and 2)

= (n− 1)(n + 1)(2nFn+1 − (n+ 6)Fn).

By the above identity and the congruence

(4n3 − 12n2 − 4n + 12)Fn−2 + (3n3 − 6n2 − 3n+ 6)Fn−3 ≡ 0 (mod 150)

(see [1]), we have

(n− 1)(n + 1)(2nFn+1 − (n+ 6)Fn) ≡ 0 (mod 150).

Editor’s Note: By the Binet formula, the expression (n − 1)(n + 1)(2nFn+1 − (n + 6)Fn)
is of the form P (n)αn + Q(n)βn, where P (x), Q(x) ∈ R[x] are polynomials of degree 3. In
particular, the sequence whose nth term is the above expression is linearly recurrent of order
6 and characteristic polynomial (x2 − x − 1)3. Hence, it suffices to check that the desired
divisibility holds for the first six values of n, namely n = 0, 1, 2, 3, 4, 5 because then it will hold
for all n ≥ 0 by induction.
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Reference

[1] W. Zhang, Some identities involving the Fibonacci numbers, The Fibonacci Quarterly, 35.3 (1997),
225–229.

Also solved by Brian Bradie, Kenneth B. Davenport, Dmitry Fleischman, Raphael
Schumacher, Albert Stadler, and the proposer.

A general inequality with Lucas numbers

H-841 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 57, No. 2, May 2019)

For any integer n ≥ 2, prove that
n∑

j=1

Laj <
Ln+an

Ln − 1

for any integer sequence {am}m≥1 with a1 ≥ 1 and am+1 ≥ am + 2m+ 1 for all m ≥ 1.

Solution by the proposer

First, we will prove the following lemma.

Lemma. We have

(1) LsLt ≤ Ls+t + Ls−t for s ≥ t;
(2) Ln+1 − 1 ≤ 2(Ln − 1) for n ≥ 2;
(3) 2Lan+n < Lan+1

− Lan+1−n−1 for n ≥ 2.

Proof of Lemma. (1) By (17a) in [1], we have

LsLt = Ls+t + (−1)tLs−t ≤ Ls+t + Ls−t.

(2) We have

RHS − LHS = 2Ln − Ln+1 − 1 = Ln−2 − 1 ≥ 0.

(3) By Lp − Lp−r ≥ Lq − Lq−r for p ≥ q > r > 0, we have

Lan+1
− Lan+1−n−1 ≥ Lan+2n+1 − Lan+n ≥ Lan+n+3 − Lan+n ≥ 2Lan+n+1 > 2Lan+n.

�

The proof of the desired inequality is by mathematical induction on n. For n = 2, the
inequality holds because

2(RHS − LHS) = La2+2 − 2La1 − 2La2 = La2−1 − 2La1 ≥ La1+2 − 2La1 = La1−1 > 0.

We assume the inequality holds for n ≥ 2. For n+ 1 we have

(Ln+1 − 1)
n+1∑

j=1

Laj = (Ln+1 − 1)



Lan+1
+

n∑

j=1

Laj





< Lan+1
Ln+1 − Lan+1

+ (Ln+1 − 1)× Lan+n

Ln − 1

≤ Lan+1+n+1 + Lan+1−n−1 − Lan+1
+ 2Lan+n (by (1) and (2))

< Lan+1+n+1 (by (3)).

Thus, the inequality holds for n+ 1. Hence, the desired inequality is proved.
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Example. If an = n2, then for n ≥ 2, we have

n∑

j=1

Lj2 <
Ln(n+1)

Ln − 1
.

Reference

[1] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Dover 2000.

Also solved by Dmitry Fleischman.

A closed form expression for a sum of products of Fibonacci numbers

H-842 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 57, No. 3, August 2019)

Given an integer n ≥ 0, find a closed for expression for the sum
∑

a+b+c=n
a,b,c≥0

Fa+bFb+cFc+a.

Solution by Brian Bradie, Newport News, VA

First
∑

a+b+c=n
a,b,c≥0

Fa+bFb+cFc+a =

n∑

a=0

n−a∑

b=0

Fa+bFn−aFn−b.

Next,

Fa+bFn−b =
1

5
(Ln+a − (−1)a+bLn−a−2b),

and

Fa+bFn−aFn−b =
1

5
(F2n + (−1)n+aF−2a − (−1)a+bF2(n−a−b) − (−1)n−bF2b)

=
1

5
(F2n − (−1)n−aF2a − (−1)a+bF2(n−a−b) − (−1)n−bF2b).

Now,

n∑

a=0

n−a∑

b=0

F2n =
(n+ 1)(n + 2)

2
F2n,

n∑

a=0

n−a∑

b=0

(−1)n−aF2a = (−1)n
n∑

b=0

n−b∑

a=0

(−1)aF2a, and

n∑

a=0

n−a∑

b=0

(−1)a+bF2(n−a−b) =
n∑

j=0

(−1)j(j + 1)F2(n−j) =
n∑

j=0

(−1)n−j(n− j + 1)F2j

= (−1)n
n∑

j=0

n−j
∑

a=0

(−1)jF2j = (−1)n
n∑

a=0

n−a∑

j=0

(−1)jF2j .
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Thus,

∑

a+b+c=n
a,b,c≥0

Fa+bFb+cFc+a =
1

5

(

(n+ 1)(n + 2)

2
F2n − 3(−1)n

n∑

a=0

n−a∑

b=0

(−1)bF2b

)

.

Rearranging the Fibonacci number recurrence relation as

(−1)kF2k = (−1)kF2k+1 − (−1)kF2k−1 and (−1)kF2k−1 = (−1)kF2k − (−1)kF2k−2,

and then summing from k = 1 through k = n yields

(−1)kF2k = −2
n∑

k=1

(−1)kF2k−1 + (−1)nF2n+1 − 1

and
n∑

k=1

(−1)kF2k−1 = 2

n∑

k=1

(−1)kF2k − (−1)nF2n.

It follows that
n∑

k=1

(−1)kF2k =
(−1)nF2n+1 + 2(−1)nF2n − 1

5
=

(−1)n(F2n+2 + F2n)− 1

5
.

Finally,

(−1)n
n∑

a=0

n−a∑

b=0

(−1)bF2b =
(−1)n
5

n∑

a=0

((−1)n−a(F2n−2a+2 + F2n−2a)− 1)

=
(−1)n
5

n∑

a=0

((−1)a(F2n+2 + F2n)− 1)

=
(−1)n
5

((−1)nF2n+2 − (n+ 1))

=
F2n+2 − (−1)n(n+ 1)

5
,

and
∑

a+b+c=n
a,b,c≥0

Fa+bFb+cFc+a =
1

5

(
(n+ 1)(n + 2)

2
F2n − 3

5
(F2n+2 − (−1)n(n+ 1))

)

.

Also solved by Jason L. Smith, Raphael Schumacher, and the proposer.

Some divisibilities with Fibonacci numbers

H-843 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 57, No. 3, August 2019)

If integers a and b have the same parity with a > b > 0 and c is odd, show that

(Fa − Fb) | (Fac − Fbc) and (La − Lb) | (Lac − Lbc).
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Solution by Raphael Schumacher, ETH Zurich, Switzerland

Because (see Formula (37) in [1] and Formula (7) in [2])

F−ca = (−1)ca+1Fca and L−ca = (−1)caLca,

we only have to consider positive c ∈ 2N0 + 1 to prove it for all c ∈ 2Z+ 1.
We have for k ∈ 2N0 + 1 that (see Formula (47) in [1])

Fkn =

k−1

2∑

i=0

(−1)in k

k − i

(
k − i

i

)

5
k−1

2
−iF k−2i

n .

Because

k

k − i

(
k − i

i

)

=
k − i+ i

k − i

(
k − i

i

)

=

(
k − i

i

)

+
i

k − i

(
k − i

i

)

=

(
k − i

i

)

+

(
k − i− 1

i− 1

)

,

which implies that

k

k − i

(
k − i

i

)

∈ N0 for all i = 0, 1, 2, . . . ,
k − 1

2
,

we deduce with k := c, n := a, and n := b that

Fca − Fcb

Fa − Fb

=
1

Fa − Fb





c−1

2∑

i=0

(−1)ia c

c− i

(
c− i

i

)

5
c−1

2
−iF c−2i

a −
c−1

2∑

i=0

(−1)ib c

c− i

(
c− i

i

)

5
c−1

2
−iF c−2i

b





=
1

Fa − Fb





c−1

2∑

i=0

(−1)ia c

c− i

(
c− i

i

)

5
c−1

2
−iF c−2i

a −
c−1

2∑

i=0

(−1)ia c

c− i

(
c− i

i

)

5
c−1

2
−iF c−2i

b





=
1

Fa − Fb

c−1

2∑

i=0

(−1)ia c

c− i

(
c− i

i

)

5
c−1

2
−i
(
F c−2i
a − F c−2i

b

)

=

c−1

2∑

i=0

(−1)ia c

c− i

(
c− i

i

)

5
c−1

2
−i F

c−2i
a − F c−2i

b

Fa − Fb
︸ ︷︷ ︸

∈N0

∈ N0.

Therefore, we have that (Fa − Fb) | (Fac − Fbc), because
an−bn

a−b
∈ N0 for all integers a, b, n ∈ N0.

Similarly, we have that (see Formula (16) in [2])

Lkn =

k−1

2∑

i=0

(−1)i(n+1) k

k − i

(
k − i

i

)

Lk−2i
n .

Because we have again that

k

k − i

(
k − i

i

)

∈ N0 for all i = 0, 1, 2, . . . ,
k − 1

2
,
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we deduce with k := c, n := a, and n := b as above that

Lca − Lcb

La − Lb

=
1

La − Lb





c−1

2∑

i=0

(−1)i(a+1) c

c− i

(
c− i

i

)

Lc−2i
a −

c−1

2∑

i=0

(−1)i(b+1) c

c− i

(
c− i

i

)

Lc−2i
b





=
1

La − Lb





c−1

2∑

i=0

(−1)i(a+1) c

c− i

(
c− i

i

)

Lc−2i
a −

c−1

2∑

i=0

(−1)i(a+1) c

c− i

(
c− i

i

)

Lc−2i
b





=
1

La − Lb

c−1

2∑

i=0

(−1)i(a+1) c

c− i

(
c− i

i

)
(
Lc−2i
a − Lc−2i

b

)

=

c−1

2∑

i=0

(−1)i(a+1) c

c− i

(
c− i

i

)
Lc−2i
a − Lc−2i

b

La − Lb
︸ ︷︷ ︸

∈N0

∈ N0.

Editor’s Note: By the Binet formula, for fixed a, b of the same parity, the sequence of nth
term Fa(2n+1) − Fb(2n+1) is linearly recurrent of order 4 of roots α2a, β2a, α2b, β2b. Hence,
to show the required divisibility it suffices to show that it holds for four consecutive ns. We
choose these ns to be −1, 0, 1, 2. When n = −1, we have F−a−F−b = (−1)a−1(Fa−Fb). When
n = 0, the divisibility is clear. When n = 1, 2, we do the same calculation as in Schumacher’s
solution but only for these two particular values of n. For example, for n = 1, we need to
expand F3a−F3b and we use that F3a = 5F 3

a +3(−1)aFa and that the same holds for a replaced
by b. Similar remarks apply to the problem involving Lucas numbers.

References

[1] http://mathworld.wolfram.com/FibonacciNumber.html.
[2] http://mathworld.wolfram.com/LucasNumber.html.

Also solved by the proposer.
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