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PROBLEMS PROPOSED IN THIS ISSUE

H-895 Proposed by Andrei K. Svinin, Irkutsk, Russia
Consider the Genocchi numbers G2n = (−1)n−12(4n − 1)B2n for n ≥ 1, where B2n is the

Bernoulli number.

(1) Prove that

⌊(n−1)/3⌋∑
j=0

1

2j + 1

(
n− j − 1

2j

)(
4

27

)j

=
4n − 1

3n−1(2n+ 1)
and deduce that

G2n =

⌊(n−1)/3⌋∑
j=0

G
(j)
2n , where G

(j)
2n = (−1)n−1 22j+1

33j−n+1

2n+ 1

2j + 1

(
n− j − 1

2j

)
B2n.

(2) Show that G
(j)
2p ∈ N for all j = 0, 1, . . . , ⌊(p− 1)/3⌋ if and only if p is prime.

(3) Prove that the g.c.d. of the set of numbers {G(j)
2p : j = 0, . . . , ⌊(p− 1)/3⌋} with a fixed

prime p ≥ 5 is the numerator of the Bernoulli number B2p.

H-896 Proposed by Mihály Bencze, Braşov, Romania
Prove that

(1) n
n∑

k=1

F 3
k + (Fn+2 − 1)3 ≤ (n+ 1)FnFn+1(Fn+2 − 1) holds for all n ≥ 1;

(2) n
n∑

k=1

L3
k + (Ln+2 − 1)3 ≤ (n+ 1)(LnLn+1 − 2)(Ln+2 − 1) holds for all n ≥ 1.

H-897 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Prove that

(i)
∞∑
n=0

1

L2FnL2Fn+1L2Fn+2

=
∞∑
n=0

1

L2F2nL2F2n+3

;

(ii)

∞∑
n=0

2

L2
Fn

LFn+1LFn+2LFn+3

=

∞∑
n=0

1

L2
Fn

L2
Fn+3

+
1

4
.
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H-898 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, Romania, and Neculai
Stanciu, Buzău, Romania

Compute

lim
n→∞

(
n
√
n!)2

(
n
√
n!Ln

n2
−

n+1
√
(n+ 1)!Fn+1

(n+ 1)2

)
.

H-899 Proposed by Robert Frontczak, Stuttgart, Germany
Show that

∞∑
n=1

sinh−1

(
1

5FnFn+1
(Ln+1

√
2L2n − Ln

√
2L2n+2)

)
=

1

2
ln

(
(3 + 2

√
2)(7− 2

√
6)

5

)
.

H-900 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Let i =

√
−1. For any odd integer m ≥ 1, prove that

∞∑
n=0

1

Lm(2n+1) + L2mi
=

2

5FmF2m
− i√

5F2m

.

SOLUTIONS

An identity with Bernoulli and Lucas numbers

H-860 Proposed by Robert Frontczak, Stuttgart, Germany
(Vol. 58, No. 3, August 2020)

Let (Bn)n≥0 be the Bernoulli numbers defined by

z

ez − 1
=
∑
n≥0

Bn
zn

n!
(|z| < 2π).

Show that for all n ≥ 0, we have

n∑
k=0

k≡n (mod 2)

(
n

k

)
(2kLk − 2)5(n−k)/2 Bn−k+2

n− k + 2
=

2n+2Ln+2 − 2

5(n+ 1)(n+ 2)
− 1.

Solution by Raphael Schumacher, ETH Zurich, Switzerland

Because B2m+1 = 0 for all m ∈ N = {1, 2, 3, 4, . . .}, we have that

n∑
k=0

(
n

k

)(
2kLk − 2

)
5(n−k)/2 Bn−k+2

n− k + 2
=

n∑
k=0

k≡n (mod 2)

(
n

k

)(
2kLk − 2

)
5(n−k)/2 Bn−k+2

n− k + 2
.
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We have the generating function identities

f1(x) : =

∞∑
k=0

Bk

k!
xk =

x

ex − 1
,

f2(x) : =

∞∑
k=0

Bk+2

(k + 2)k!
xk =

1

x2
− 1(

e
x
2 − e−

x
2

)2 ,
f3(x) : =

∞∑
k=0

Lk

k!
xk = eαx + eβx,

f4(x) : =

∞∑
k=0

1

k!
xk = ex,

f5(x) : =

∞∑
k=0

Lk+2

(k + 2)!
xk =

eαx − αx− 1

x2
+

eβx − βx− 1

x2
,

f6(x) : =

∞∑
k=0

1

(k + 2)!
xk =

ex − x− 1

x2
.

Therefore, we can calculate

∞∑
n=0

[
n∑

k=0

(
n

k

)(
2kLk − 2

)
5(n−k)/2 Bn−k+2

n− k + 2

]
xn

n!

= f2

(√
5x
)
[f3(2x)− 2f4(x)]

=

 1

5x2
− 1(

e
√
5x
2 − e−

√
5x
2

)2
 ·

(
e2αx + e2βx − 2ex

)

=

(
1

5x2
− ex

(eαx − eβx)
2

)
·
(
e2αx + e2βx − 2ex

)
=

e2αx + e2βx − 2ex

5x2
− ex

=
e2αx + e2βx − 2ex + 2(1− α− β)x

5x2
− ex

=
e2αx − 2αx− 1

5x2
+

e2βx − 2βx− 1

5x2
+

2x+ 2− 2ex

5x2
− ex

=
4

5

(
e2αx − 2αx− 1

4x2
+

e2βx − 2βx− 1

4x2

)
− 2

5

(
ex − x− 1

x2

)
− ex

=
4

5
f5(2x)−

2

5
f6(x)− f4(x)

=
∞∑
n=0

[
2n+2Ln+2 − 2

5(n+ 1)(n+ 2)
− 1

]
xn

n!
.

This implies the result by comparing the coefficients
[
xn

n!

]
on both sides.

In the above calculation, we have used the identities α = 1+
√
5

2 , β = 1−
√
5

2 , and α+ β = 1.
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Furthermore, we have also used that(
1

5x2
− ex

(eαx − eβx)
2

)
·
(
e2αx + e2βx − 2ex

)
=

(
eαx − eβx

)2 − 5x2ex

5x2 (eαx − eβx)
2 ·

(
e2αx + e2βx − 2e(α+β)x

)
=

e2αx + e2βx − 2e(α+β)x − 5x2ex

5x2 (eαx − eβx)
2 ·

(
eαx − eβx

)2
=

e2αx + e2βx − 2ex − 5x2ex

5x2 (eαx − eβx)
2 ·

(
eαx − eβx

)2
=

e2αx + e2βx − 2ex − 5x2ex

5x2

=
e2αx + e2βx − 2ex

5x2
− ex.

Also solved by Dmitry Fleischman, Albert Stadler, and the proposer.

The sum of products of two consecutive generalized Tribonacci numbers

H-861 Proposed by David Terr, Oceanside, CA
(Vol. 58, No. 3, August 2020)

For arbitrary constants a, b, c define the sequence (Gn)n≥0 by G0 = a, G1 = b, G2 = c and
the recurrence Gn = Gn−1 +Gn−2 +Gn−3 for n ≥ 3. Find a closed form expression for

n∑
j=0

G2jG2j+1 valid for all n ≥ 0.

Solution by Hideyuki Ohtsuka, Saitama, Japan

We have

2G2j = G2j+1 +G2j −G2j−1 −G2j−2 (1)

and

2G2j+1 = G2j+1 +G2j +G2j−1 +G2j−2. (2)

We have
n∑

j=0

G2jG2j+1 = G0G1 +
n∑

j=1

G2jG2j+1

= ab+
1

4

n∑
j=1

(
(G2j+1 +G2j)

2 − (G2j−1 +G2j−2)
2
)

(by (1) and (2))

= ab+
1

4

(
(G2n+1 +G2n)

2 − (G1 +G0)
2
)

=
(G2n+1 +G2n)

2 − (b+ a)2 + 4ab

4
=

(G2n+1 +G2n)
2 − (a− b)2

4
.

Editorial comment: An equivalent form of the above identity was noticed before the
problem was published by Kenneth B. Davenport as a generalization of Advanced Problem
H-833. Davenport’s letter is dated March 4, 2020, whereas Terr’s proposal arrived on March
11, 2019.
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Also solved by Kenneth B. Davenport, Dmitry Fleischman, Robert Frontczak,
Raphael Schumacher, Albert Stadler, Andrés Ventas, and the proposer.

Sums of generalized Fibonacci and Lucas numbers

H-862 Proposed by Ángel Plaza, Gran Canaria, Spain
(Vol. 58, No. 3, August 2020)

Let (Fk,n)n∈Z and (Lk,n)n∈Z denote the k-Fibonacci and k-Lucas numbers given by Fk,n+1 =
kFk,n + Fk,n−1, Lk,n+1 = kLk,n +Lk,n−1 for n ≥ 1 with Fk,0 = 0, Fk,1 = 1, Lk,0 = 2, Lk,1 = k.
Prove that for integers m ≥ 1 and j ≥ 0, we have

(i)
m∑

n=1

Fk,n±jLk,n∓j =
Fk,2m+1 − 1

k
+

{
0, if m ≡ 0 (mod 2);

(−1)jFk,±2j , if m ≡ 1 (mod 2).

(ii)

m∑
n=1

Fk,n+jFk,n−jLk,n+jLk,n−j =
Fk,4m+2/k − 1−mLk,4j

k2 + 4
.

Solution by the proposer

We will use the Binet’s formulas for these numbers Fk,n =
αn
k − βn

k

αk − βk
and Lk,n = αn

k + βn
k ,

where αk =
k +

√
k2 + 4

2
and βk =

k −
√
k2 + 4

2
. Note that αk · βk = −1, αk + βk = k, and

αk − βk =
√
k2 + 4.

Therefore, for (i),

m∑
n=1

Fk,n±jLk,n∓j =
1

αk − βk

m∑
n=1

(
αn±j
k − βn±j

k

)(
αn∓j
k + βn∓j

k

)
=

1

αk − βk

m∑
n=1

(
α2n
k − β2n

k

)
+

1

αk − βk

m∑
n=1

(−1)k
((

αk

βk

)±j

−
(
βk
αk

)±j
)

=
1

αk − βk

(
α2
k − α2m+2

k

1− α2
k

−
β2
k − β2m+2

k

1− β2
k

)
+

m∑
n=1

(−1)n(−1)±jFk,±2j

=
1

αk + βk

(
α2m+1
k − β2m+1

k − (αk − βk)

αk − βk

)
+ (−1)±jFk,±2j

m∑
n=1

(−1)n

=
Fk,2m+1 − 1

k
+

{
0, if m is even;

(−1)±j+1Fk,±2j , if m is odd.
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Now, for (ii), we use that for any integer m, Fk,mLk,m = Fk,2m, so

m∑
n=1

Fk,n+jFk,n−jLk,n+jLk,n−j =
m∑

n=1

Fk,2n+2jFk,2n−2j

=
1

(αk − βk)2

m∑
n=1

(
α2n+2j
k − β2n+2j

k

)(
α2n−2j
k − β2n−2j

k

)
=

1

(αk − βk)2

m∑
n=1

[(
α4n
k + β4n

k

)
−
(
αk

βk

)2j

−
(
βk
αk

)2j
]

=
1

(αk − βk)2

m∑
n=1

Lk,4n − 1

(αk − βk)2

m∑
n=1

(
α4j
k + β4j

k

)
=

Fk,4m+2

k − 1−mLk,4j

k2 + 4
,

where we have used that

m∑
n=1

Lk,4n =
Fk,4m+2

k
− 1.

Also solved by Brian Bradie, Dmitry Fleischman, Albert Stadler, David Terr,
and Andrés Ventas.

Sums of series involving values of the Riemann zeta function

H-863 Proposed by Kenneth B. Davenport, Dallas, PA
(Vol. 58, No. 4, November 2020)

Show that∑
n≥1

ζ(2n+ 1)− 1

2n+ 1
= 1− γ − ln 2

2
and

∑
n≥1

ζ(2n)− 1

n(n+ 1)
= ln(2π)− 3

2
,

where ζ(n) is the Riemann zeta function.

Solution by Andrés Ventas, Santiago de Compostela, Spain

The first formula appears in the work of Srivastava (formula 2.31 in [1]), and he mentions
that it is a known result from Legendre.

For the second formula, we are going to use another formula from Srivastava (formula 2.32
in [2]) ∑

n≥1

ζ(2n)− 1

n
= ln(2)

and a second formula from Choi, Srivastava, and Quine (formula 2.17 in [2])∑
n≥1

ζ(2n)− 1

n+ 1
=

3

2
− ln(π).

Thus, we have∑
n≥1

ζ(2n)− 1

n(n+ 1)
=
∑
n≥1

ζ(2n)− 1

n
−
∑
n≥1

ζ(2n)− 1

n+ 1
= ln(2)−

(
3

2
− ln(π)

)
= ln(2π)− 3

2
.
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Also solved by Michel Bataille, Brian Bradie, Khristo N. Boyadzhiev, Alejandro
Cardona Castrillón, Dmitry Fleischman, Robert Frontczak, Won Kyun Jeong,
Raphael Schumacher, Albert Stadler, Séan M. Stewart, David Terr, and the pro-
poser.

A series involving inverse tangents of reciprocals of Pell numbers

H-864 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 58, No. 4, November 2020)

The Pell numbers {Pn}n≥0 satisfy P0 = 0, P1 = 1, and Pn = 2Pn−1+Pn−2 for n ≥ 2. Prove
that

∞∑
n=1

tan−1 1√
2Pn

tan−1 1√
2Pn+1

=
π

4
tan−1 1

2
√
2
.

Solution by Andrés Ventas, Santiago de Compostela, Spain

This can be solved in the same way as the solution from Jason L. Smith to the Advanced
Problem H-821 (Vol. 58, No. 2, May 2020)

formula for H-821: tan−1

(
1

Fn

)
= tan−1

(
1

Fn+1

)
+ tan−1

(
1

Fn+2

)
.

formula for H-864: tan−1

(
1√
2Pn

)
= 2 tan−1

(
1√

2Pn+1

)
+ tan−1

(
1√

2Pn+2

)
.

Using the same notation as the one used by Jason L. Smith,

S = t1t2 +
∑
m≥1

t2mt2m+1 + t2m+1t2m+2 = t1t2 +
∑
m≥1

t2m+1(t2m + t2m+2)

= t1t2 +
1

2

∑
m≥1

(t2m − t2m+2)(t2m + t2m+2) = t1t2 +
1

2

∑
m≥1

(t22m − t22m+2)

(telescoping) = t1t2 +
1

2
t22 =

(
t1 +

1

2
t2

)
t2

=

(
tan−1 1√

2P1

+
1

2
tan−1 1√

2P2

)
tan−1 1√

2P2

=

(
tan−1

(
1√
2

)
+

1

2
tan−1

(
1

2
√
2

))
tan−1

(
1

2
√
2

)
=

π

4
tan−1 1

2
√
2
.

Also solved by Michel Bataille, Brian Bradie, Dmitry Fleischman, Robert Frontczak,
Ángel Plaza, Albert Stadler, and the proposer.
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A limit with nth roots of products of Fibonacci and Lucas numbers

H-865 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, Romania, and Neculai
Stanciu, Buzău, Romania (Vol. 58, No. 4, November 2020)

Let {xn}n≥0 be the sequence given by x0 = 0, x1 = 1, and

xn+2 = (2n+ 5)xn+1 − (n2 + 4n+ 3)xn for n ≥ 0.

Find
lim
n→∞

(
n+1
√
Fn+1Ln+1xn+1 − n

√
FnLnxn

)
.

Solution by Ángel Plaza, Gran Canaria, Spain

After solving the recurrrence relation, for example by generating functions, we have xn =
n(n+ 3)!

4(n+ 1)(n+ 2)
=

n(n+ 3)n!

4
. Now by the Cezaro-Stolz lemma the proposed limit, say L, is

L = lim
n→∞

n+1
√
Fn+1Ln+1xn+1

n+ 1

= lim
n→∞

n+1
√
α2(n+1)(n+ 1)!

n+ 1

= lim
n→∞

α2(n+ 1)e−1

n+ 1

=
α2

e
.

Also solved by Michel Bataille, Brian Bradie, Dmitry Fleischman, Albert Stadler,
Andrés Ventas, and the proposer.
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