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PROBLEMS PROPOSED IN THIS ISSUE

H-863 Proposed by Kenneth B. Davenport, Dallas, PA
Show that∑

n≥1

ζ(2n+ 1)− 1

2n+ 1
= 1− γ − ln 2

2
and

∑
n≥1

ζ(2n)− 1

n(n+ 1)
= ln(2π)− 3

2
,

where ζ(n) is the Riemann zeta function.

H-864 Proposed by Hideyuki Ohtsuka, Saitama, Japan
The Pell numbers {Pn}n≥0 satisfy P0 = 0, P1 = 1, and Pn = 2Pn−1 +Pn−2 for n ≥ 2. Prove

that
∞∑
n=1

tan−1
1√
2Pn

tan−1
1√

2Pn+1

=
π

4
tan−1

1

2
√

2
.

H-865 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, Romania, and Neculai
Stanciu, Buzău, Romania

Let {xn}n≥0 be the sequence given by x0 = 0, x1 = 1, and

xn+2 = (2n+ 5)xn+1 − (n2 + 4n+ 3)xn for n ≥ 0.

Find
lim
n→∞

(
n+1
√
Fn+1Ln+1xn+1 − n

√
FnLnxn

)
.

H-866 Proposed by Ángel Plaza, Gran Canaria, Spain
Let an denote the nth number in the sequence given by an+1 = an + an−1 for n ≥ 1 with

initial values a0 = a− 1 and a1 = 1 with some a ≥ 1. Prove that
n∑

k=1

2(ak+1 − ak)

ak+1 + ak
< ln an+1 <

n∑
k=1

a2k+1 − a2k
2ak+1ak

.
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H-867 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Let a, b, c, d be even positive integers with a+ b = c+ d. Prove that

a∑
k=1

Lb

FkLk+b
+

b∑
k=1

La

LkFk+a
=

c∑
k=1

Ld

FkLk+d
+

d∑
k=1

Lc

LkFk+c
.

SOLUTIONS

A sum of arctangents

H-829 Proposed by Ángel Plaza and Francisco Perdomo, Gran Canaria, Spain
(Vol. 56, No. 4, November 2018)

For any positive integer k, let {Fk,n}n≥0 be the sequence defined by Fk,0 = 0, Fk,1 = 1, and
Fk,n+1 = kFk,n + Fk,n−1 for n ≥ 1. Find the limit

lim
k→∞

k +
√
k2 + 4

2

∞∑
n=1

arctan

(
kF 2

k,n+1

1 + Fk,nF
2
k,n+1Fk,n+2

)
.

Solution by Albert Stadler, Herrliberg, Switzerland

We note that

arctan
1

Fk,nFk,n+1
− arctan

1

Fk,n+1Fk,n+2
= arctan

1
Fk,nFk,n+1

− 1
Fk,n+1Fk,n+2

1 + 1
Fk,nF

2
k,n+1Fk,n+2

= arctan
Fk,n+1(Fk,n+2 − Fk,n)

1 + Fk,nF
2
k,n+1Fk,n+2

= arctan
kF 2

k,n+1

1 + Fk,nF
2
k,n+1Fk,n+2

.

So,
∞∑
n=1

arctan
kF 2

k,n+1

1 + Fk,nF
2
k,n+1Fk,n+2

= arctan
1

Fk,1Fk,2
= arctan

1

k
,

and

lim
k→∞

k +
√
k2 + 4

2

∞∑
n=1

arctan
kF 2

k,n+1

1 + Fk,nF
2
k,n+1Fk,n+2

= lim
k→∞

k +
√
k2 + 4

2
arctan

1

k
= 1.

Also solved by Brian Bradie, Dmitry Fleischman, Robert Frontczak, and the
proposers.
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A sum divisible by four consecutive Fibonacci numbers

H-830 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 56, No. 4, November 2018)

For an integer n ≥ 1, prove that

12
n∑

k=1

(FkFk+1Fk+2)
2 ≡ 0 (mod FnFn+1Fn+2Fn+3).

Solution by the proposer

Using Fa+bFa+c = FaFa+b+c + (−1)aFbFc (see [3] (20a)), we have

FkFk+2 = Fk−1Fk+3 + (−1)k−1F1F3 = Fk−1Fk+2 − 2(−1)k. (1)

We have
n∑

k=1

(FkFk+1Fk+2)
2 =

n∑
k=1

(FkF
2
k+1Fk+2)× (FkFk+2)

=

n∑
k=1

FkF
2
k+1Fk+2(Fk−1Fk+3 − 2(−1)k) by (1)

=

n∑
k=1

Fk−1FkF
2
k+1Fk+2Fk+3 − 2

n∑
k=1

(−1)kFkF
2
k+1Fk+2. (2)

From identity (2.1) in [1], we have
n∑

k=1

Fk−1FkF
2
k+1Fk+2Fk+3 =

1

4
Fn−1FnFn+1Fn+2Fn+3Fn+4. (3)

From identity (2.17) in [2], we have
n∑

k=1

(−1)kFkF
2
k+1Fk+2 =

1

3
(−1)nFnFn+1Fn+2Fn+3. (4)

By (2), (3), and (4), we have

12
n∑

k=1

(FkFk+1Fk+2)
2 = FnFn+1Fn+2Fn+3(3Fn−1Fn+4 − 8(−1)n)

≡ 0 (mod FnFn+1Fn+2Fn+3).

[1] R. S. Melham, Sums of certain products of Fibonacci and Lucas numbers, The Fibonacci
Quarterly, 37.3 (1999), 248–251.
[2] R. S. Melham, Sums of certain products of Fibonacci and Lucas numbers, II, The Fibonacci
Quarterly 38.1 (2000), 3–7.
[3] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Dover, 2008.

Also solved by Kenneth B. Davenport and Raphael Schumacher.
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Proth primality test using Fibonacci numbers

H-831 Proposed by Predrag Terzić, Podgorica, Montenegro
(Vol. 56, No. 4, November 2018)

Let Pj(x) = 2−j((x−
√
x2 − 4)j + (x+

√
x2 − 4)j), where j and x are nonnegative integers.

Let N = k2m + 1 with k odd, k < 2m, and m > 2. Let S0 = Pk(Fn) and Si = S2
i−1 − 2 for

i ≥ 1. Prove the following statement: If there exists Fn for which Sm−2 ≡ 0 (mod N), then
N is prime.

No solution to this problem was received. The proposer pointed out [1], where some partic-
ular cases are treated (the cases n = 4, 5, 6 and k and m in various residue classes).

[1] P. Terzić, Primality tests for specific classes of N = k2m±1, arXiv: 1506.03444v1(2015).

Closed form expressions for sums with Fibonacci and Lucas numbers

H-832 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 56, No. 4, November 2018)

For positive integers n and r, find a closed form expression for

(i)
∑n

k=1 F
3
rkLrk;

(ii)
∑n

k=1 F
3
2Fk

F2Lk
.

Solution by the proposer

We use Catalan’s identity

F 2
n − (−1)n−mF 2

m = Fn+mFn−m. (5)

(i) We have

F2r

n∑
k=1

F 3
rkLrk =

n∑
k=1

F 2
rk(F2krF2r)

=

n∑
k=1

F 2
rk(F 2

r(k+1) − F
2
r(k−1)) by (5)

=

n∑
k=1

(
F 2
rkF

2
r(k+1) − F

2
r(k−1)F

2
rk

)
= F 2

rnF
2
r(n+1).

Thus, we obtain

n∑
k=1

F 3
rkLrk =

F 2
rnF

2
r(n+1)

F2r
.
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(ii) We have
n∑

k=1

F 3
2Fk

F2Lk
=

n∑
k=1

F 2
2Fk

(F2Fk
F2Lk

)

=
n∑

k=1

F 2
2Fk

(F 2
Fk+Lk

− F 2
Fk−Lk

)

=
n∑

k=1

F 2
2Fk

(F 2
2Fk+1

− F 2
−2Fk−1

) (since Lk = Fk−1 + Fk+1)

=
n∑

k=1

(F 2
2Fk

F 2
2Fk+1

− F 2
2Fk−1

F 2
2Fk

) = F 2
2Fn

F 2
2Fn+1

.

Also solved by Brian Bradie, Dmitry Fleischman, Robert Frontczak, and Raphael
Schumacher.

Closed form for a sum of Tribonacci Lucas numbers

H-833 Proposed by Robert Frontczak, Stuttgart, Germany
(Vol. 57, No. 1, February 2019)

The Tribonacci-Lucas numbers {Kn}n≥0 satisfy K0 = 3, K1 = 1, K2 = 3, and Kn =
Kn−1 +Kn−2 +Kn−3 for n ≥ 3. Prove that for any n ≥ 1

n∑
j=1

K2jK2j+1 =
1

4
((K2n +K2n+1)

2 − 16).

Solution by Brian Bradie, Newport News, VA

Observe

(K2j +K2j+1)
2 − (K2j−2 +K2j−1)

2 = (K2j +K2j+1 +K2j−2 +K2j−1)

× (K2j +K2j+1 −K2j−2 −K2j−1)

= (2K2j+1)(2K2j) = 4K2jK2j+1.

Therefore,
n∑

j=1

K2jK2j+1 =
1

4

n∑
j=1

((K2j +K2j+1)
2 − (K2j−2 +K2j−1)

2)

=
1

4
((K2n +K2n+1)

2 − (K0 +K1)
2)

=
1

4
((K2n +K2n+1)

2 − 16).

Also solved by Kenneth B. Davenport, Wei-Kai Lai and John Risher (jointly),

Hideyuki Ohtsuka, Ángel Plaza, Raphael Schumacher, David Terr, and the pro-
poser.

Late acknowledgement: Albert Stadler has solved Advanced Problem H-825.
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