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PROBLEMS PROPOSED IN THIS ISSUE

H-883 Proposed by Kenneth B. Davenport, Dallas, PA
Prove that for all n ≥ 1:

(a) 3

n∑
k=1

F2k + 4

n∑
k=1

F 3
2k = F 3

2n+1 − 1;

(b) 5

n∑
k=1

F2k + 15

n∑
k=1

F 3
2k + 11

n∑
k=1

F 5
2k = F 5

2n+1 − 1;

(c) 7
n∑

k=1

F2k + 35
n∑

k=1

F 3
2k + 56

n∑
k=1

F 5
2k + 29

n∑
k=1

F 7
2k = F 7

2n+1 − 1.

H-884 Proposed by Robert Frontczak, Stuttgart, Germany
Prove that

(i)
∞∑
n=2

coth−1(αn − α−n) =
1

2
ln((α+ 1)(α+ 2)),

∞∑
n=1

coth−1(α2n − α−2n) =
1

2
ln(α3),

and
∞∑
n=1

coth−1(α2n+1 − α−2n−1) =
1

2
ln

(
α+ 2

α

)
.

(ii) Deduce from (a) the following series evaluations
∞∑
n=1

coth−1

(
L4n+2 − 1

2L2n+1

)
= ln

(
α+ 2

α

)
,

∞∑
n=1

coth−1

(
L4n − 1

2
√
5F2n

)
= 3 lnα,

and

∞∑
n=2

coth−1
(
βn − β−n

)
=

1

2
ln((α+ 1)(α+ 2))− 3 lnα.
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H-885 Proposed by Robert Frontczak, Stuttgart, Germany
Show that

∞∑
i=1

H
(2)
2i−r

1

α2i
=

(
α+ 5− r

10

)
π2

6
−
(
α+ 3− r

4

)
ln2(α) hold for r = 0, 1,

where H
(2)
n =

∑n
m=1 1/m

2. Deduce from these two identities the known (but nontrivial) result

∞∑
i=1

1

i2α2i
=

π2

15
− ln2(α).

H-886 Proposed by D. M. Bătineţu–Giurgiu, Bucharest, Romania, and Neculai
Stanciu, Buzău, Romania

If a, b, c ∈ (0, π/2) and n ≥ 1, prove that

(i)
tan a

Fn sin 2b+ Fn+1 sin 2c
+

tan b

Fn sin 2c+ Fn+1 sin 2a
+

tan c

Fn sin 2a+ Fn+1 sin 2b
>

3

2Fn+2
;

(ii)
tan a

F 2
n sin 2b+ F 2

n+1 sin 2c
+

tan b

F 2
n sin 2c+ F 2

n+1 sin 2a
+

tan c

F 2
n sin 2a+ F 2

n+1 sin 2b
>

3

2F2n+1
.

H-887 Proposed by D. M. Bătineţu–Giurgiu, Bucharest, Romania, and Neculai
Stanciu, Buzău, Romania

If m ≥ 1 is an integer, compute lim
n→∞

ncos2 Fm

(
( n+1
√
(n+ 1)!)sin

2 Fm − (
n
√
n!)sin

2 Fm

)
.

H-888 Proposed by José Luis Dı́az–Barrero, Barcelona, Spain
For any integer n ≥ 1, prove that√

6F 4
n + 3L4

n +
√

5F 4
n + 4L4

n +
√
7F 4

n + 2L4
n ≥ F 2

n+3.

SOLUTIONS

An identity with multinomial coefficients and Lucas numbers

H-849 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 57, No. 4, November 2019)

For nonnegative integers m and n, find a closed form formula for∑
i+j+k=n
i,j,k≥0

(−1)jLi−j

(
m

k

)(
n

i, j, k

)
.

Solution by Albert Stadler, Herrliberg, Switzerland

We note that

(−1)jLi−j = (−1)j(αi−j + βi−j) = αiβj + αjβi.
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Therefore, ∑
i+j+k=n
i,j,k≥0

(
n

i, j, k

)
(−1)jLi−jz

k =
∑

i+j+k=n
i,j,k≥0

(
n

i, j, k

)
(αiβj + αjβi)zk

= (α+ β + z)n + (β + α+ z)n = 2(1 + z)n

= 2

n∑
k=0

(
n

k

)
zk,

and by identifying coefficients, we conclude that for a fixed k ∈ {0, 1, . . . , n}, we have∑
i+j+k=n

i,j≥0

(
n

i, j, k

)
(−1)jLi−j = 2

(
n

k

)
.

We deduce that∑
i+j+k=n
i,j,k≥0

(
n

i, j, k

)
(−1)jLi−j

(
m

k

)
=

n∑
k=0

(
m

k

) ∑
i+j+k=n

i,j≥0

(
n

i, j, k

)
(−1)jLi−j

= 2
n∑

k=0

(
m

k

)(
n

n− k

)
= 2

(
m+ n

n

)
.

Also solved by Brian Bradie, Dmitry Fleischman, Raphael Schumacher, and the
proposer.

A formula for the area of a triangle with Fibonacci coordinates

H-850 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 58, No. 1, February 2019)

For integers m, n, r, and s, let

A⃗B = (Fm, Fm+r, Fm+s) and A⃗C = (Fn, Fn+r, Fn+s).

Prove that the area of the triangle ABC is

1

2

√
F 2
r + F 2

s + F 2
r−s|Fn−m|.

Solution by Steve Edwards, Roswell, GA

Because such an area is given by one-half the magnitude of the cross product of the two
vectors, the area equals

1

2

√
(Fm+rFn+s − Fn+rFm+s)2 + (FmFn+s − FnFm+s)2 + (FmFn+r − FnFm+r)2.

Each of the three squared differences under the radical can be transformed by using the identity
Fa+bFa+c − FaFa+b+c = (−1)aFbFc, which can be found in [1], giving

1

2

√
F 2
s−rF

2
n−m + F 2

s F
2
n−m + F 2

r F
2
n−m =

1

2

√
F 2
r + F 2

s + F 2
r−s|Fn−m|.

NOVEMBER 2021 375



THE FIBONACCI QUARTERLY

Reference

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, 2nd ed., John Wiley and Sons, 2018.

Also solved by Michel Bataille, Alan Duan, Brian Bradie, Dmitry Fleischman,
G. C. Greubel, Wei-Kai Lai, Kapil Kumar Gurjar, Alejandro Pinilla-Barrera,
Raphael Schumacher, Jason Smith, Albert Stadler, and the proposer.

A limit with nth roots of Fn

H-851 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, Romania, and Neculai
Stanciu, Buzău, Romania (Vol. 58, No. 1, February 2019)

Let (an)n≥1 and (bn)n≥1 be sequences of positive real numbers such that limn→∞ an+1/(n
ran) =

a ∈ R∗
+ and limn→∞ bn+1/(n

sbn) = b ∈ R∗
+, where r, s ∈ R+. Compute

lim
n→∞

(
n
√
an · n+1

√
Fn+1

nr+s
−

n+1
√
an+1 · n

√
Fn

(n+ 1)r+s

)
n
√
bn.

Solution by Brian Bradie, Newport News, VA
Note

lim
n→∞

n
√
an
nr

= lim
n→∞

n

√
an
nrn

= lim
n→∞

an+1

(n+ 1)r(n+1)

nrn

an

= lim
n→∞

an+1

nran

(
n

n+ 1

)r(n+1)

=
a

er
.

Similarly,

lim
n→∞

n
√
bn

ns
=

b

es
.

With
lim
n→∞

n
√
Fn = lim

n→∞
n+1
√
Fn+1 = α,

it follows that

lim
n→∞

(
n
√
an · n+1

√
Fn+1

nr+s
−

n+1
√
an+1 · n

√
Fn

(n+ 1)r+s

)
n
√

bn

= lim
n→∞

(
n
√
an
nr

· n+1
√
Fn+1 −

n+1
√
an+1

(n+ 1)r
· n
√

Fn

(
n

n+ 1

)s) n
√
bn

ns

=
( a

er
· α− a

er
· α · 1

) b

es
= 0.

Consider the slightly modified question: compute

lim
n→∞

(
n
√
an · n+1

√
Fn+1

nr+s−1
−

n+1
√
an+1 · n

√
Fn

(n+ 1)r+s−1

)
n
√

bn.

Working as above,

lim
n→∞

n
√

an/Fn

nr
= lim

n→∞
n

√
an/Fn

nrn
= lim

n→∞

an+1/Fn+1

(n+ 1)r(n+1)

nrn

an/Fn

= lim
n→∞

an+1

nran
· Fn

Fn+1

(
n

n+ 1

)r(n+1)

=
a

αer
.
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Let

un =
n+1
√
an+1/Fn+1

n
√

an/Fn

.

Then,

lim
n→∞

un = lim
n→∞

n+1
√

an+1/Fn+1

(n+ 1)r
· nr

n
√

an/Fn

(
n+ 1

n

)r

=
a

αer
· αe

r

a
· 1 = 1,

lim
n→∞

un − 1

lnun
= 1, and

lim
n→∞

unn = lim
n→∞

an+1

nran

Fn

Fn+1

(n+ 1)r

n+1
√
an+1/Fn+1

(
n

n+ 1

)r

= a · 1
α
· αe

r

a
· 1 = er,

and

lim
n→∞

n+1
√
an+1/Fn+1 − n

√
an/Fn

nr−1
= lim

n→∞

n
√
an/Fn

nr−1
(un − 1)

= lim
n→∞

n
√
an/Fn

nr

un − 1

lnun
lnunn

=
a

αer
· 1 · r =

ar

αer
.

Finally,

lim
n→∞

(
n
√
an · n+1

√
Fn+1

nr+s−1
−

n+1
√
an+1 · n

√
Fn

(n+ 1)r+s−1

)
n
√
bn

= lim
n→∞

n+1
√
Fn+1

n
√
Fn

(
n
√
an/Fn

nr−1
−

n+1
√
an+1/Fn+1

nr−1

1

(1 + 1/n)r+s−1

)
n
√
bn

ns

= lim
n→∞

n+1
√
Fn+1

n
√
Fn

(
n
√
an/Fn − n+1

√
an+1/Fn+1

nr−1

+(r + s− 1)
n+1
√
an+1/Fn+1

(n+ 1)r
· (n+ 1)r

nr
+O

(
1

n

))
n
√
bn

ns

= α2
(
− ar

αer
+ (r + s− 1)

a

αer

) b

es
=

ab(s− 1)α

er+s
.

Also solved by Michel Bataille, Dmitry Fleischman, Raphael Schumacher, and
the proposers.
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A sum involving binomial coefficients, Fibonacci, Lucas, and Bernoulli numbers

H-852 Proposed by Robert Frontczak, Stuttgart, Germany
(Vol. 58, No. 1, February 2020)

Let (Bn)n≥0 denote the Bernoulli numbers. Show that for all r ≥ 1 and n ≥ 3,

n∑
k=0

(
n

k

)
FrkLr(n−k)BkBn−k =

{
(1− n)BnFrn, n even;
−nBn−1Frn, n odd.

and
n∑

k=0

(
n

k

)
(21−k − 1)(21−(n−k) − 1)FrkLr(n−k)BkBn−k =

{
(1− n)BnFrn, n even;

0, n odd.

Solution by the proposer

From [2] we know that if a sequence of numbers T (n, k) satisfies the relation

T (n, k) = T (n, n− k) (0 ≤ k ≤ n),

then
n∑

k=0

T (n, k)FrkLr(n−k) = Frk

n∑
k=0

T (n, k).

We apply this relation to the Bernoulli polynomials, which are defined by

zexz

ez − 1
=
∑
n≥0

Bn(x)
zn

n!
(|z| < 2π).

Recall that, for n ≥ 1, we have the following relation for the Bernoulli polynomials (see [1]):

n∑
k=0

(
n

k

)
Bk(x)Bn−k(y) = n(x+ y − 1)Bn−1(x+ y)− (n− 1)Bn(x+ y).

So, setting x = y we get the special case
n∑

k=0

(
n

k

)
Bk(x)Bn−k(x) = n(2x− 1)Bn−1(2x)− (n− 1)Bn(2x).

Now, by applying Carlitz’s formula with

T (n, k) =

(
n

k

)
Bk(x)Bn−k(x),

we get the more general statement
n∑

k=0

(
n

k

)
FrkLr(n−k)Bk(x)Bn−k(x) = Frn(n(2x− 1)Bn−1(2x)− (n− 1)Bn(2x)).

For x = 0, and noting that Bn(0) = Bn, we get

n∑
k=0

(
n

k

)
FrkLr(n−k)BkBn−k = Frn(−nBn−1 − (n− 1)Bn).

The first identity follows because B2n+1 = 0 for n ≥ 1. The second identity is a special case
when x = 1/2, using Bn(1/2) = (21−n − 1)Bn, Bn(1) = (−1)nBn, and simplifying.
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Also solved by Brian Bradie, Dmitry Fleischman, G. C. Greubel, Raphael
Schumacher, and Albert Stadler.

Lower bounds for some sums involving Lucas numbers

H-853 Proposed by Ángel Plaza and Sergio Falcón, Gran Canaria, Spain
(Vol. 58, No. 1, February 2020)

Let Ln be the nth k-Lucas number given by the recurrence Ln+2 = kLn+1+Ln for all n ≥ 0,
with L0 = 2, L1 = k. Prove that

(i)

n∑
j=1

L2
j√

Lj + 1
≥ (Ln + Ln+1 − k − 2)2

k
√

kn(Ln + Ln+1 + k(n− 1)− 2)
;

(ii)

n∑
j=1

L4
j√

L2
j + 1

≥ (L2n+1 + k((−1)n − 2))2

k
√
kn(L2n+1 + k(n− 2 + (−1)n))

.

Solution by the proposers

The inequalities follow by Jensen’s inequality. Note that the function f(x) =
x2√
x+ 1

is convex

because f ′′(x) =
3x2 + 8x+ 8

4(x+ 1)5/2
> 0. Therefore,

n∑
j=1

L2
j√

Lj + 1
≥ n ·

(∑
Lj

n

)2
√∑

Lj

n + 1

= n ·

(
Ln+Ln+1−k−2

kn

)2
√

Ln+Ln+1−k−2
kn + 1

=
(Ln + Ln+1 − k − 2)2

k
√
kn(Ln + Ln+1 + k(n− 1)− 2)

,

where we use

n∑
j=1

Lj =
Ln + Ln+1 − k − 2

k
, which can be proved by induction or by using the

Binet’s formula for k-Lucas numbers.

Inequality (ii) follows by Jensen’s inequality as before, and using that
n∑

j=1

L2
j =

L2n+1

k
+

(−1)n − 2, which may be proved by induction or by using the Binet’s formula for k-Lucas
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numbers:

n∑
j=1

L4
j√

L2
j + 1

≥ n ·

(∑
L2
j

n

)2

√∑
L2
j

n + 1

= n ·

(
L2n+1+(−1)nk−2k

kn

)2
√

L2n+1+(−1)nk−2k
kn + 1

=
(L2n+1 + k ((−1)n − 2))2

k
√
kn (L2n+1 + k (n− 2 + (−1)n))

.

□

Also solved by Michel Bataille, Brian Bradie, Dmitry Fleischman, G. C. Greubel,
and Albert Stadler.

380 VOLUME 59, NUMBER 4


