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PROBLEMS PROPOSED IN THIS ISSUE

H-755 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

Let n ≥ 1 be an integer. Prove that

(1) If xk ∈ R for k = 1, . . . , n, then

2

(

n
∑

k=1

Lk sinxk

)(

n
∑

k=1

Lk cos xk

)

≤ n(LnLn+1 − 2).

(2) If m ≥ 1, then

mm
n
∑

k=1

(1 + L2k−1)
m+1 ≥ (m+ 1)m+1(L2n+2 − 2).

H-756 Proposed by Russell J. Hendel, Towson University.

We seek to generalize a known problem which states that

#{〈x1, . . . , xn+1〉 : x1x2 ∨ x2x3 ∨ · · · ∨ xnxn+1 = 0} = Fn+3,

where xi are Boolean variables for i = 1, . . . , n. To generalize the above formula, we

(i) fix integers d, i with d > i ≥ 1;
(ii) let Dj be products of d Boolean variables xk with consecutive indices such that Dj

and Dj+1 have i variables in common;
(iii) let m be the total number of variables occurring in D1, . . . ,Dn and
(iv) let

Sn = #{〈x1, . . . , xm〉 : D1 ∨D2 ∨ · · · ∨Dn = 0}.
Determine the coefficients of the minimal recursion satisfied by the {Sn}n≥1.
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H-757 Proposed by H. Ohtsuka, Saitama, Japan.

For an odd prime p prove that
p
∏

k=1

Lk ≡
{

2(−1)(p+1)/4 (mod Fp) if p ≡ −1 (mod 4),

(−1)(p−1)/4Fp−3 (mod Fp) if p ≡ 1 (mod 4).

H-758 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

Compute:

lim
n→∞

(

n
√
n!

Fm

(

n
√

(2n− 1)!!
Fm+1

(

tan

(

π(n+ 1) n+1
√
n+ 1

4n n
√
n

)

− 1

)Fm+2
))

.

H-759 Proposed by H. Ohtsuka, Saitama, Japan.

Let r ≥ 2 be an integer. Define the sequence {Gn} by

Gn = Gn−1 + · · ·+Gn−r (n ≥ 1)

with arbitrary G0, G1, . . . , G−r+1. For an integer n ≥ 1, prove that

n
∑

k=1

G2
k =

r
∑

k=1

k(r − k − 1) + 2

2(r − 1)

k
∑

i=1

(Gn+i−kGn+i −Gi−kGi).

SOLUTIONS

An Identity Involving Middle Binomial Coefficients

H-727 Proposed by Bassem Ghalayini, Louaize, Lebanon.
(Vol. 50, No. 3, August 2012)

Let n be a natural number. Prove that

(2n+ 1)

(

2n

n

)

=
∑

0≤i,j,k≤n
i+j+k=n

(

2i

i

)(

2j

j

)(

2k

k

)

.

Solution by Eduardo Brietzke.

The generating function for the central binomial coefficients is

1√
1− 4x

=
∞
∑

n=0

(

2n

n

)

xn. (1)

Replacing x by x2 and multiplying by x we obtain

x√
1− 4x2

=
∞
∑

n=0

(

2n

n

)

x2n+1.

Differentiating we get

1

(1− 4x2)
3

2

=
∞
∑

n=0

(2n + 1)

(

2n

n

)

x2n.
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Replacing back x2 by x and using (1) yields
( ∞
∑

n=0

(

2n

n

)

xn
)3

=

∞
∑

n=0

(2n + 1)

(

2n

n

)

xn,

or,
∞
∑

n=0

xn
∑

0≤i,j,k≤n

i+j+k=n

(

2i

i

)(

2j

j

)(

2k

k

)

=
∞
∑

n=0

(2n+ 1)

(

2n

n

)

xn,

and the desired identity follows.

Also solved by Paul S. Bruckman, Kenneth B. Davenport, Ángel Plaza, and the
proposer.

Inequalities With Consecutive Fibonacci Numbers, Square–Roots and Powers

H-728 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania. (Vol. 50, No. 4, November 2012)

Let a, b, c,m be positive real numbers and n be a positive real number. Prove that:

(a)
Fn

√

F 2
n + aFn+1Fn+2

+
Fn+1

√

F 2
n+1 + bFn+2Fn

+
Fn+2

√

F 2
n+2 + cFnFn+1

≥ 1,

provided that a+ b+ c ≤ 24;

(b)
a−3m−3

(Fnb+ Fn+1c)m+1
+

b−3m−3

(Fnc+ Fn+1a)m+1
+

c−3m−3

(Fna+ Fn+1b)m+1
≥ 3

Fm+1
n+2

,

provided that abc = 1.

Solution by Ángel Plaza.

Part (a) is a direct consequence of a more general inequality: Let x, y, z, a, b, c be positive
real numbers, with a+ b+ c ≤ 24. Then

x
√

x2 + ayz
+

y
√

y2 + bzx
+

z
√

z2 + cxy
≥ 1.

By Hölder’s inequality
(

∑ x
√

x2 + µyz

)(

∑ x
√

x2 + µyz

)

(

∑

x(x2 + µyz)
)

≥ (x+ y + z)3,

where the sums are cyclic and the coefficient µ means the corresponding coefficient a, b, or c.
Therefore, we need only to show that

(x+ y + z)3 ≤ x3 + y3 + z3 + (a+ b+ c)xyz,

which is equivalent to

(x+ y)(y + z)(z + x) ≥ (a+ b+ c)

3
xyz.

And this is true due to the AM-GM inequality:
(

x+ y√
xy

)(

y + z√
yz

)(

z + x√
zx

)

≥ 8 ≥ a+ b+ c

3
.

�
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For part (b) it is enough to prove the following more general inequality: Let x, y, a, b, c be
positive real numbers, with abc = 1. Then

1

a3(xb+ yc)
+

1

b3(xc+ ya)
+

1

c3(xa+ yb)
≥ 3

x+ y
,

which is a consequence of

(xb+ yc)(xc+ ya)(xa+ yb) ≤ (x+ y)3,

since by the AM-GM inequality a2b+ b2c+ c2a ≤ 3. �

Also solved by Paul S. Bruckman, Dmitry Fleischman, and the proposers.

On the Sequence of Rotational Numbers

H-729 Proposed by Paul S. Bruckman, Nanaimo, BC.
(Vol. 50, No. 4, November 2012)

Define a sequence {an}n≥0 of rational numbers by the recurrence
n
∑

k=0

ak
n+ 1− k

= δn,0, where

δi,j is the Kronecker symbol which equals 1 if i = j and 0; otherwise.

(a) Prove that −
∞
∑

k=1

an
n

= γ, the Euler constant;

(b) Prove that an = − 1

n+ 1
+

n−1
∑

k=0

un−kak for n ≥ 1, where um =
2(Hm − 1)

(m+ 2)
and

Hm =

m
∑

k=1

1

k
for all m ≥ 1.

Solution by Anastasios Kotronis.

We start proving a lemma.

Lemma 1. For n ≥ 0, an ≥ −1.

Proof. From the recurrence we get a0 = 1 ≥ −1 and a1 = −1/2 ≥ −1. Assume that am ≥ −1
for 1 ≤ m ≤ n. From the recurrence, we get

(n+ 1)an +
n+ 1

2
an−1 +

n+ 1

3
an−2 + · · · + n+ 1

n
a1 + 1 = 0, (1)

(n+ 2)an+1 +
n+ 2

2
an +

n+ 2

3
an−1 + · · · + n+ 2

n+ 1
a1 + 1 = 0. (2)

Now using the induction hypothesis and subtracting (1) from (2), we get:

an+1 =
1

n+ 2

n
∑

k=1

ak

(

n+ 1

n+ 1− k
− n+ 2

n+ 2− k

)

≥ 1

n+ 2

n
∑

k=1

(

n+ 2

n+ 2− k
− n+ 1

n+ 1− k

)

= Hn

(

1− n+ 1

n+ 2

)

+
1

n+ 1
− 1 =

Hn

n+ 2
+

1

n+ 1
− 1 ≥ −1.

�
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Next, we compute the generating function of an. Multiplying by xn and summing for the
recurrence defining an for n ≥ 0, we get

∑

n≥0

n
∑

k=0

ak
n+ 1− k

xn =
∑

n≥0

δn,0x
n,

or, equivalently,
∑

k≥0

akx
k
∑

k≥0

xk

k + 1
= 1,

or, equivalently,

− ln(1− x)

x

∑

k≥0

akx
k = 1,

therefore,

A(x) :=
∑

k≥0

akx
k = − x

ln(1− x)
,

from where we get that
∑

n≥0 anx
n has radius of convergence 1.

Now for x ∈ (−1, 1), we have

A(x) = 1 + x
∑

n≥1

anx
n−1,

so,
A(x)− 1

x
=
∑

n≥1

anx
n−1,

which implies that
∫ x

0

A(t)− 1

t
dt =

∑

n≥1

an
n
xn.

But from Lemma 1, we have that an/n ≥ −1/n so from a known theorem of Hardy and
Littlewood (see [1, p. 65, Theorem 8.4]), we have that

∑

n≥1

an
n

converges and

−
∑

n≥1

an
n

= −
∫ 1

0

A(t)− 1

t
dt =

∫ 1

0

1

ln t
+

1

t
dt = γ

(see [2, p. 1]). This proves part (a).

(b) With the convention that the sum over an empty set of indices is zero, we get that
H0 = 0, so u0 = −1 and what we want to prove is equivalent to

n
∑

k=0

akun−k =
1

n+ 1
, (n ≥ 1).

Denoting by U(x) the generating function of un, multiplying by xn and summing for n ≥ 1,
we get

∑

n≥1

n
∑

k=0

akun−kx
n =

∑

n≥1

xn

n+ 1
,
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therefore,

A(x)U(x) − a0u0 = (A(x))−1 − 1,

so

U(x) =
ln2(1− x)

x2
+ 2

ln(1− x)

x
,

and it suffices to show that

[xn]

(

ln2(1− x)

x2
+ 2

ln(1− x)

x

)

=
2(Hn − 1)

n+ 2
,

where [xn]f(x) denotes the coefficient of xn in the Taylor expansion of f(x). But

[xn]
ln2(1− x)

x2
=

n
∑

k=0

1

(k + 1)(n − k + 1)

= − 1

n+ 2

n
∑

k=0

(

1

k + 1
+

1

n− k + 1

)

=
2Hn+1

n+ 2
,

so

[xn]

(

ln2(1− x)

x2
+ 2

ln(1− x)

x

)

=
2Hn+1

n+ 2
− 2

n+ 1

=
2
(

Hn + 1
n+1

)

n+ 2
− 2

n+ 1

=
2Hn

n+ 2
+

2

(n+ 1)(n + 2)
− 2

n+ 1

=
2(Hn − 1)

n+ 2
.

References

[1] A. M. Odlyzko, Asymptotic enumeration methods,
http://www.dtc.umn.edu/~odlyzko/doc/asymptotic.enum.pdf.

[2] P. Sebah and X. Gourdon, Collection of formulae for Euler’s constant γ,
http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.pdf.

Also solved by G. C. Greubel and the proposer.

Identities Involving Fibonacci, Lucas and Pell Numbers

H-730 Proposed by N. Gauthier, Kingston, ON.
(Vol. 51, No. 1, February 2013)

Let bxc be the largest integer less than or equal to x and put εn = (1 + (−1)n)/2. Then,
with Pn the nth Pell number prove the following identities:

(a)
∑

k≥0

1

25k

(

n− 2k

2k

)

=
1

5n/26

[

εn(L2n+2 + 3Ln+1) + (1− εn)
√
5(F2n+2 + 3Fn+1)

]

;

(b)
∑

k≥0

1

16k

(

n− 1− 2k

2k

)

=
1

2n
[Pn + n];
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(c)

b(n−1)/4c
∑

k=0

1

25k(n− 4k)

(

n− 1− 2k

2k

)

=
1

5n/2n

[

εn(L2n + Ln − 2(1 + (−1)n/2))

+ (1− εn)
√
5(F2n + Fn)

]

;

(d)

∑

k≥1

k

5k

(

n− 1− k

k

)

=
1

5n/254
[εn((45n − 20)F2n − 15nL2n)

+ (1− εn)
√
5((9n − 4)L2n − 15nF2n)

]

.

Solution by Ángel Plaza.

(a) In order to prove the equality we will show that both sides of the equality present the
same generating function. For the left-hand side we use the “Snake Oil Method” [1] applied
to

an =
∑

k≥0

1

25k

(

n− 2k

2k

)

.

Let A(x) be the generating function of {an}. That is,

A(x) =
∑

n≥0

xn
∑

k≥0

1

25k

(

n− 2k

2k

)

=
∑

k≥0

x2k

25k

∑

n≥0

(

n− 2k

2k

)

xn−2k

=
∑

k≥0

x2k

25k
x2k

(1− x)2k+1
=

1

1− x

∑

k≥0

(

x4

25(1− x)2

)k

=
25(1 − x)

25(1 − x)2 − x4
,

where we have used the identity

∑

r≥0

(

rk

x

)r

=
xk

√

(1− x)k+1
(k ≥ 0),

(see eq. (4.3.1), page 120 in [1]). Then, the generating function for the even terms of the
considered sequence is

Ae(x) =
A(x) +A(−x)

2
=

−25(−25 + 25x2 + x4)

625− 1250x2 + 575x4 − 50x6 + x8
,

and the generating function for the odd terms of the sequence is

Ao(x) =
A(x)−A(−x)

2
=

25x(25 − 25x2 + x4)

625 − 1250x2 + 575x4 − 50x6 + x8
.

For the right-hand side of (a) we consider the two cases: n even, and n odd, since respectively
εn = 1 and εn = 0. By using the Binet’s formulas for Lucas and Fibonacci numbers and the
sum of geometric series it is a routine to get the same generating functions obtained for the
left-hand side of (a), Ae(x) and Ao(x).
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(b) Let A(x) be the generating function of the sequence at the left-hand side. That is,

A(x) =
∑

n≥0

xn
∑

k≥0

1

16k

(

n− 1− 2k

2k

)

=
∑

k≥0

x2k+1

16k

∑

n≥0

(

n− 1− 2k

2k

)

xn−1−2k

= x
∑

k≥0

(

x2

16

)k
x2k

(1− x)2k+1
=

x

1− x

∑

k≥0

(

x4

16(1 − x)2

)k

=
16x(1 − x)

16(1 − x)2 − x4
.

For the right-hand side of (b) we may use the Binet’s formula for the Pell numbers, or more

directly its generating function P (x) =
x

1− 2x− x2
. Then

∑

n≥0

Pn
xn

2n
=

x/2

1− 2(x/2) − (x/2)2
=

2x

4− x− x2
.

Also, since
∑

n≥0

1

2n
xn =

2

2− x
,

we then have
∑

n≥0

n

2n
xn = x

d

dx

(

2

2− x

)

=
2x

(2− x)2
.

Finally, since
2x

4− x− x2
+

2x

(2− x)2
=

16x(1 − x)

16(1 − x)2 − x4
,

the result follows.

Identities (c) and (d) may be proved by similar arguments to the used for identity (a).
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Also solved by Paul S. Bruckman, G. C. Greubel, and the proposer.
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