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PROBLEMS PROPOSED IN THIS ISSUE

H-643 Proposed by John H. Jaroma, Loyola College in Maryland, Baltimore, MD
The rank of apparition of a prime p in {Fn} is the index of the first term in the Fibonacci

sequence that contains p as a divisor. Furthermore, p is said to have maximal rank of apparition
provided that its rank of apparition in the underlying sequence is either p− 1 or p + 1. Recall
that a pair of twin primes is a pair of consecutive odd integers p and p + 2 each of which
is prime. Determine if both components of a pair of twin primes can simultaneously have
maximal rank of apparition in {Fn}.

H-644 Proposed by José Luis Dı́az-Barrero, Barcelona, Spain
Let n be a positive integer. Solve the following system of equations
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H-645 Proposed by John H. Jaroma, Loyola College in Maryland, Baltimore, MD
(1) Show that every Mersenne prime is a factor of infinitely many Ln.
(2) Show that no Fermat prime is a factor of any Ln.

H-646 Proposed by John H. Jaroma, Loyola College in Maryland, Baltimore, MD
A Wiefrich prime is any prime p that satisfies 2p−1 ≡ 1 (mod p2). Presently, 1093 and

3511 are the only known such primes. Similarly defined is a Wall-Sun-Sun prime, which is any
prime p such that Fp−(5/p) ≡ 0 (mod p2), where (5/p) is the Legendre symbol. There are no
known Wall-Sun-Sun primes. More generally, in 1993 P. Montgomery added 23 new solutions
to ap−1 ≡ 1 (mod p2). This brought to 219 the number of observed solutions to 2 ≤ a ≤ 99
and 3 ≤ p < 232.
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Let p be a prime and n ≥ 1. Prove that there exist infinitely many integers a > 1 such
that ap−1 ≡ 1 (mod pn).

SOLUTIONS

Pisot from Padova

H-629 Proposed by Ernst Herrmann, Siegburg, Germany
(Vol. 43, no. 3, August 2005)

Consider the sequence (an)n≥0 of non-negative integers which are defined by a0 = a1 =
0, a2 = 1 and by the recurrence relation an = an−2 + an−3 if n ≥ 3. Prove that the numbers
of the sequence (an)n≥0 can also be defined by the relation

−0.5 < an+2 − a2
n+1/an ≤ 0.5

for all sufficiently large n; i.e., for all n ≥ n0. Thus, an+2 is uniquely defined if an, an+1 and
an+2 fulfill the relation. Determine the smallest possible value of n0.
Based on the solution by the proposer

The characteristic equation of the recurrence is

f(x) = x3 − x− 1.

The above polynomial has a real root α ∈ (1.3, 1.5) and the other roots are complex conjugated,
say ρ, ρ. By looking at the last coefficient, we get that 1 = α|ρ|2, therefore |ρ| = α−1/2. Using
the initial values, one computes that

an = c1α
n + c2ρ

n + c3ρ
n,

where c1, c2, c3 are constants. Their numerical values are c1 = 0.2344 . . . , |c2| = |c3| =
.4306 . . . . Hence,

un = c1α
n(1 + En),

where

|En| ≤
|c2|+ |c3|

|c1|
|ρ|nα−n < 4α−3n/2, (1)

where we used the fact that |c2| = |c3| < 2|c1|. Thus,

an+2 −
a2

n+1

an
= c1α

n+2

(
1 + En+2 −

(1 + En+1)2

1 + En

)
. (2)

Note that

∣∣∣∣1 + En+2 −
(1 + En+1)2

1 + En

∣∣∣∣ =
∣∣∣∣En + En+2 + EnEn+2 − 2En+1 − E2

n+1

1 + En

∣∣∣∣ .
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Since |α| > 1.3, we get that if n > 8, then α3n/2 > α12 > (1.3)12 > (1.6)6 > (2.5)3 > 8, so
estimate (1) gives |En| < 1/2. Thus, for n > 8, |1 + En| > 1/2, therefore

∣∣∣∣En + En+2 + EnEn+2 − 2En+1 − E2
n+1

1 + En

∣∣∣∣ ≤ 2(2|En|+ |En+2|+ 3|En+1|) ≤ 48α−3n/2,

so, relation (2) gives

∣∣∣an+2 −
a2

n+1

an

∣∣∣ ≤ 48|c1|α|n+2α−3n/2 ≤ (0.25) · 48
αn/2−2

=
12

(1.3)n/2−2
,

and the right most expression above is smaller than 0.5 if n > 36 since for such n we have
αn/2−2 > (1.3)n/2−2 > (1.3)16 > (1.6)8 > (2.5)4 > 62 > 24. One can now check by hand, by
listing the first 36 values of an, that the desired inequality holds in fact starting with n0 = 12.

Also solved by Paul S. Bruckman.

Editor’s comment. The recurrence (an)n≥0 is related to the Padovan sequence (Pn)n≥0

given by P0 = P1 = P2 = 1 and Pn = Pn−2 + Pn−3 for all n ≥ 3. Given positive integers
a0 and a1 with a1 ≥ a0, let (an)n≥0 be the sequence in which an+2 is the closest integer to
a2

n+1/an for all n ≥ 0 (if there are two choices for the closest integer, pick one of them). The
resulting sequence (an)n≥0 is called a Pisot sequence. Problem H629 points out that a certain
ternary recurrent sequence is a Pisot sequence if n > n0. Conversely, it is not true in general
that Pisot sequences satisfy a linear recurrence (of any order) as it was shown by David Boyd.

Fibonacci polynomials and periodic binary recurrences

H-630 Proposed by Mario Catalani, Torino, Italy
(Vol. 43, no. 3, August 2005)

Let Fn(x, y) be the bivariate Fibonacci polynomials, defined, for n ≥ 2, by Fn(x, y) =
xFn−1(x, y) + yFn−2(x, y), where F0(x, y) = 0, F1(x, y) = 1. Assume xy 6= 0 and x2 + 4y 6= 0.

1. Prove the following identity,

x

n−1∑
k=0

(
2n− 1− k

k

)
(x2 + 4y)n−k−1(−y)k = F2n(x, y).

2. Let

an =
n−1∑
k=0

(
2n− 1− k

k

)
(−3)n−k−1.
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Find a recurrence and a closed form for an.
Solution by H.-J. Seiffert, Berlin, Germany

Define the sequence of Fibonacci polynomials by F0(x) = 0, F1(x) = 1, and Fn(x) =
xFn−1(x) + Fn−2(x) for n ≥ 2. Then (see equations (3.5)–(3.6) and (2.15) in [1]),

F2n(x) =
1√

x2 + 4

((x +
√

x2 + 4
2

)2n

−
(x−

√
x2 + 4
2

)2n)
, (1)

and

F2n(x) =
n−1∑
k=0

(
2n− 1− k

k

)
x2n−2k−1. (2)

Let x > 0. From (1), one finds

F2n(i
√

x2 + 4) =
i2n−1

x

√
x2 + 4F2n(x), with i =

√
−1.

Now, (2) with x replaced by i
√

x2 + 4 gives

F2n(x) = x
n−1∑
k=0

(
2n− 1− k

k

)
(−1)k(x2 + 4)n−k−1. (3)

By analytic continuation, (3) remains valid for all complex x.
1. It is easily verified that Fn(x, y) = y(n−1)/2Fn(x/y1/2) for all n ≥ 0, so that the desired
identity follows almost immediately from (3).
2. With x = i, (3) implies that an = (−1)niF2n(i) for all n ≥ 0. Hence, by (1),

an =
i√
3
(−1)n

((√3 + i

2

)2n

−
(√3− i

2

)2n)
, for all n ≥ 0.

Using cos(π/6) =
√

3/2, sin(π/6) = 1/2, and Euler’s relation eit = cos t + i sin t, one finds

an =
2√
3
(−1)n−1 sin

(nπ

3

)
, for all n ≥ 0.
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Now, the recurrence an = −an−1 − an−2 for n ≥ 2 is easily justified by using the known
trigonometric identities.
[1] A. F. Horadam & Bro. J. M. Mahon “Pell and Pell-Lucas polynomials”, The Fibonacci
Quarterly 23.1 (1985): 7–20.

Also solved by Paul S. Bruckman and the proposer.

A large determinant

H-631 Proposed by Jayantibhai M. Patel, Ahmedabad, India
(Vol. 43, no. 4, November 2005)

For any positive integer n ≥ 2, prove that the value of the following determinant

∣∣∣∣∣∣∣∣∣
(FnFn+2 + F 2

n+1) F 2
n F 2

n+1 F 2
n+2 −(FnFn+2 + F 2

n+1)
(FnFn+2 + F 2

n+1) FnFn+3 −Fn+1Ln+1 Fn−1Fn+2 (FnFn+2 + F 2
n+1)

0 2Fn+1Fn+2 2FnFn+2 −2FnFn+1 0
(FnFn+2 + F 2

n+1) −FnFn+3 Fn+1Ln+1 −Fn−1Fn+2 (FnFn+2 + F 2
n+1)

−(FnFn+2 + F 2
n+1) F 2

n F 2
n+1 F 2

n+2 (FnFn+2 + F 2
n+1)

∣∣∣∣∣∣∣∣∣
is −(2(FnFn+2 + F 2

n+1))
5.

Solution by Miquel Grau-Sánchez and José Luis Dı́az-Barrero, Universitat
Politècnica de Catalunya, Barcelona, Spain.

Let us denote by ∆ the given determinant. Then, from the relation Ln+1 = Fn + Fn+2

and setting a = Fn, b = Fn+1, c = Fn+2, we have Fn−1 = b− a and

∆ =

∣∣∣∣∣∣∣∣∣
ac + b2 a2 b2 c2 −(ac + b2)
ac + b2 a(b + c) −b(a + c) c(b− a) ac + b2

0 2bc 2ac −2ab 0
ac + b2 −a(b + c) b(a + c) −c(b− a) ac + b2

−(ac + b2) a2 b2 c2 ac + b2

∣∣∣∣∣∣∣∣∣

= (ac + b2)2

∣∣∣∣∣∣∣∣∣
1 a2 b2 c2 −1
1 a(b + c) −b(a + c) c(b− a) 1
0 2bc 2ac −2ab 0
1 −a(b + c) b(a + c) −c(b− a) 1
−1 a2 b2 c2 1

∣∣∣∣∣∣∣∣∣ .

Making the following row-column transformations (c5 + c1 −→ c1), (r2 + r4 −→ r4) and
(−r1 + r5 −→ r5), yields

∆ = (ac + b2)2

∣∣∣∣∣∣∣∣∣
0 a2 b2 c2 −1
2 a(b + c) −b(a + c) c(b− a) 1
0 2bc 2ac −2ab 0
4 0 0 0 2
0 0 0 0 2

∣∣∣∣∣∣∣∣∣ ,
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and

∆ = −16(ac + b2)2

∣∣∣∣∣∣
a2 b2 c2

a(b + c) −b(a + c) c(b− a)
bc ac −ab

∣∣∣∣∣∣ .

Taking into account that c = a + b, we have

Λ :=
∆

−16(a2 + b2 + ab)2
=

∣∣∣∣∣∣
a2 b2 (a + b)2

a2 + 2ab −b2 − 2ab b2 − a2

b2 + ab a2 + ab −ab

∣∣∣∣∣∣ .

After making the transformation (r1 + r3 −→ r3), we obtain

Λ = (a2 + b2 + ab)

∣∣∣∣∣∣
a2 b2 (a + b)2

a2 + 2ab −b2 − 2ab b2 − a2

1 1 1

∣∣∣∣∣∣ = 2(a2 + b2 + ab)3,

from which it immediately follows that

∆ = −16(a2 + b2 + ab)Λ = −
(
2(a2 + b2 + ab)

)5

= −
(
2(FnFn+2 + F 2

n+1)
)5

,

and the proof is complete.

Also solved by Gökçen Alptekýn and Paul S. Bruckman.

Late acknowledgements:
1. H-621 was also solved by H.-J. Seiffert, who noted that it is essentially the same as H-479.
2. H-627 and H-628 were also solved by Paul S. Bruckman.

Retraction: The proposer of H-638 wishes to retract this problem as it has already appeared
as B-1009.

Errata: There are some misprints in the published solution to H-572, in Volume 40, May
2002, page 191. Expression (12) there should be

2π

25

[
sin

2π

5
− sin

8π

5
+ φ

(
sin

4π

5
− sin

6π

5

)]
.
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