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PROBLEMS PROPOSED IN THIS ISSUE

H-689 Proposed by Hideyuki Ohtsuka, Saitama, Japan
For positive integers l, m, and n such that l 6= m prove that

Fn
mFln ≡ Fn

l Fmn (mod Fm−l).

H-690 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Let m and n be positive integers. Put

Sm(n) =

n
∑

k=1

(−1)k(m+1)F 2m
k .

Prove that

LmSm(n) = (−1)n(m+1)Sm
1 (n)−

bm/2c
∑

i=1

i
∑

r=1

m

i

(

m− i− 1

i− 1

)(

i

r

)

Sm−r(n).

H-691 Proposed by Ovidiu Furdui, Cluj, Romania and Huizeng Qin, Shandong,
China

Find the value of
∞
∑

n=1

(−1)n
(

ln 2− 1

n+ 1
− 1

n+ 2
− · · · − 1

2n

)2

.

H-692 Proposed by Napoleon Gauthier, Kingston, ON
Let q ≥ 1, N ≥ 3 be integers and define Q = b(N − 1)/2c. Find closed form expressions for

the following sums:

a) P0(θ, q) =

q
∑

k=1

sin(2k − 1)θ

cos2 kθ cos2(k − 1)θ
;
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b) R0(θ, q) =

q
∑

k=1

sin(2k − 1)θ[sin2 θ + sin2(2k − 1)θ]

cos4 kθ cos4(k − 1)θ
;

c) P1(N) =

Q
∑

k=1

k sin (2k−1)π
N

cos2 kπ
N cos2 (k−1)π

N

;

d) R1(N) =

Q
∑

k=1

k sin (2k−1)π
N

[

sin2 π
N + sin2 (2k−1)π

N

]

cos4 kπ
N cos4 (k−1)π

N

.

SOLUTIONS

Cauchy-Schwartz to the Rescue

H-672 Proposed by J. L. D́ıaz-Barrero, Barcelona, Spain
(Vol. 46, No. 2, May 2008)

Let n be a positive integer. Prove that

n
∑

k=1

(

Fk

1 + Lk

)2

≥ 1

FnFn+1

(

n
∑

k=1

F 2
k

1 + Lk

)2

≥ F 3
nF

3
n+1

(

n
∑

k=1

F 2
k (1 + Lk)

)−2

.

Solution by Harris Kwong, Fredonia, NY

Both halves of the given inequality, in their equivalent forms, can be obtained from the
Cauchy-Schwartz inequality and the identity

∑n
k=1 F

2
k = FnFn+1, as follows:

(

n
∑

k=1

F 2
k

1 + Lk

)2

=

(

n
∑

k=1

Fk ·
Fk

1 + Lk

)2

≤
(

n
∑

k=1

F 2
k

)

n
∑

k=1

(

Fk

1 + Lk

)2

= FnFn+1

n
∑

k=1

(

Fk

1 + Lk

)2

,

and

F 2
nF

2
n+1 =

(

n
∑

k=1

F 2
k

)2

=

(

n
∑

k=1

Fk√
1 + Lk

· Fk

√

1 + Lk

)2

≤
(

n
∑

k=1

F 2
k

1 + Lk

)(

n
∑

k=1

F 2
k (1 + Lk)

)

.

Also solved by Paul S. Bruckman, Kenneth B. Davenport, H.-J. Seiffert, and the
proposer.

Pell Numbers via Binomial Coefficients

H-673 Proposed by H.-J. Seiffert, Berlin, Germany
(Vol. 46, No. 3, August 2008)

The Pell and Pell-Lucas numbers are defined by

P0 = 0, P1 = 1, and Pn+1 = 2Pn + Pn−1 for n ≥ 1,

Q0 = 0, Q1 = 1, and Qn+1 = 2Qn +Qn−1 for n ≥ 1,
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respectively. Prove that, for all positive integers n,

P2n−1 = 2−n
2n−1
∑

k=0

(−1)b(2n−5k−5)/4c

(

4n− 1

k

)

,

Q2n = 21−n
2n
∑

k=0

(−1)b(2n−5k)/4c

(

4n+ 1

k

)

.

Solution by the proposer

The Fibonacci polynomials are defined by F0(x) = 0, F1(x) = 1, and Fn+1(x) = xFn(x) +
Fn−1(x) for all n ≥ 1. It is well-known that

Fn(x) =
α(x)n − β(x)n√

x2 + 4
, n ≥ 0, (1)

where α(x) = (x +
√
x2 + 4)/2 and β(x) = (x −

√
x2 + 4)/2. If γ = α(2) = 1 +

√
2 and

δ = β(2) = 1−
√
2, then

Pn =
γn − δn

2
√
2

and Qn = γn + δn, n ≥ 0. (2)

From ([1], identity (1)), we know that
n
∑

k=0

(

2n+ 1

n− k

)

F2k+1(x) = (x2 + 4)n, n ≥ 0, x ∈ C. (3)

In (3), we take x = i
√

−
√
2δ = 2i sin(π/8), where i =

√
−1. Since 4 +

√
2δ =

√
2γ, we get

n
∑

k=0

(

2n+ 1

n− k

)

ak = (
√
2γ)n, n ≥ 0, (4)

where

ak := F2k+1(2i sin(π/8)) =
cos((2k + 1)π/8)

cos(π/8)
, k ≥ 0,

as is easily verified from (1). The sequence (ak)k≥0 satisfies the recurrence ak+4 = −ak, k ≥ 0,

with initial values a0 = 1, a1 =
√
2− 1, a2 = 1−

√
2, and a3 = −1. Now, it is easily seen that

ak = (−1)b5k/4c +
√
2bk, k ≥ 0,

where the sequence (bk)k≥0 is defined as

bk =

{

(−1)b(5k+4)/4c if k ≡ 1, 2, 5, 6 (mod 8);
0 if k ≡ 0, 3, 4, 7 (mod 8).

In (4), replace n by 2n − 1. Since γ2n−1 = (Q2n−1 + 2
√
2P2n−1)/2, as is seen from (2), and

since
√
2 is irrational, after reindexing k by 2n − 1 − k, we obtain the first proposed identity

and also

Q2n−1 = 22−n
2n−1
∑

k=0

b2n−1−k

(

4n− 1

k

)

.

Similarly, (4) with n replaced by 2n gives the second proposed identity and also

P2n = 2−n
2n
∑

k=0

b2n−k

(

4n+ 1

k

)

.
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Also solved by Paul S. Bruckman.

An Inequality Involving π and Fibonacci Numbers

H-674 Proposed by José Luis D́ıaz-Barrero, Barcelona, Spain and Pantelimon
George Popescu, Bucharest, Romania
(Vol. 46, No. 3, August 2008)

Let n be a positive integer. Prove that

nπ2FnFn+1 ≤ (n(Fn − 1) + π(Fn+2 − 1))2.

Editor’s solution

Let α = (1 +
√
5)/2. We use the well-known fact (easily proved by induction on k) that

αk−2 < Fk < αk−1 for all k ≥ 3. We have

Fn+2 − 1 > Fn+1 > αn−1 > n for all n ≥ 4.

Thus, on the right-hand side we have

n(Fn − 1) + π(Fn+2 − 1) > nFn − n+ (Fn+2 − 1) > nFn.

Hence, for n ≥ 4 it suffices to prove the inequality obtained by replacing the right-hand side
of it with (nFn)

2. Now

(nFn)
2 > (nαn−2)2 = n2α2n−4,

while

nπ2FnFn+1 < nπ2αn−1αn = nπ2α2n−1.

Thus, it suffices that

nπ2α2n−1 < n2α2n−4,

or n > π2α3, which holds for n ≥ 42. The desired inequality can be now be checked by hand
for all the smaller values of n.

Also solved by Paul S Bruckman, Kenneth B. Davenport, and the proposers.

Perfect Primes

H-675 Proposed by John J. Jaroma, Ave Maria, Florida
(Vol. 46, No. 3, August 2008)

An odd perfect number is an odd integer that is equal to the sum of its proper divisors.
Although such a number is currently unknown, many conditions necessary for its existence
have been established. The earliest is attributed to Euler who showed that if n is an odd
perfect number then

n = pαp2β1

1 · · · p2βr

r

where p, p1, . . . , pr are distinct odd primes and p ≡ α ≡ 1 (mod 4). The prime p has been
dubbed the special prime. Show that the least prime divisor of n is not p.

Solution by Douglas Iannucci, St. Thomas, VI
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Since n is perfect, we have σ(pα) | 2n. Write α = 4k + 1 for some k. Then

σ(pα) =
p4k+2 − 1

p− 1
=

p2k+1 − 1

p− 1
· p

2k+1 + 1

p+ 1
· (p+ 1).

Since (p2k+1 ± 1)/(p ± 1) are both integers, we have p+ 1 | 2n; therefore
p+ 1

2
| n.

Since (p+1)/2 is an odd integer (greater than 1), it is divisible by an odd prime, say q; clearly
q < p (since (p+ 1)/2 < p). Therefore, p is not the least prime divisor of n.

Also solved by Paul S. Bruckman and the proposer.

A Wicked Composition

H-676 Proposed by Mohammad K. Azarian, Evansville, Indiana
Let f(x) = sinhx, g(x) = ln(x+

√
1 + x2), and h(x) = 1/(2−f(−g(−x))). Also, let h0(x) =

h(x), h1(x) = h0(h0(x)), . . . and hn+1(x) = h0(hn(x)) for all n ≥ 0. If p(x) =
∏n

i=0 hi(x),

then find the coefficient of F r
k in the expansion of 1/

√

p(Fk) in terms of r and n.

Solution by Paul S. Bruckman

Note that −g(−x) = − ln(−x+
√
1 + x2) = ln(x+

√
1 + x2) = g(x). Hence,

f(−g(−x)) = f(g(x)) = sinh
(

ln(x+
√

1 + x2)
)

=
1

2

(

x+
√

1 + x2)− (−x+
√

1 + x2)
)

= x.

Then

• h(x) = h0(x) = h0 = 1/(2 − x);
• h1(x) = h1 = 1/(2 − h0) = (2− x)/(3 − 2x);
• h2(x) = h2 = 1/(2 − h1) = (3− 2x)/(4 − 3x);

etc. By an easy induction process on n, we find that

hn(x) =
(n+ 1)− nx

(n+ 2)− (n+ 1)x
for all n ≥ 0.

It then follows that p(x) = ((n + 2)− (n+ 1)x)−1. Hence,

1
√

p(Fk)
= ((n+ 2)− (n+ 1)Fk)

1/2 = (n+ 2)1/2
√

1− (n+ 1)Fk

n+ 2
:= A(n, k).

Note that A(n, k) is imaginary for k ≥ 3 and n > 0. Nevertheless, proceeding naively by
expanding the square root, we get

A(n, k) = (n+ 2)1/2
∞
∑

r=0

(−1)r
(

1/2

r

)(

(n+ 1)Fk

n+ 2

)r

.

The desired coefficient is therefore equal to

(−1)r(n+ 2)1/2
(

1/2

r

)(

n+ 1

n+ 2

)r

= −(n+ 1)r(n+ 2)1/2−r22r−4(2r − 1)−1

(

2r

r

)

.
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Also solved by Kenneth B. Davenport and the proposer.

Late Acknowledgement. G. C. Greubel solved part a) of H-670.

Errata. In H-685 part d), the right-hand side should be “Fk” instead of “F3k”.
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