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A TRIBUTE TO PAUL S. BRUCKMAN
Contributed by

Napoleon Gauthier and Florian Luca

This issue of the Advanced Problems and Solutions (APS) section is dedicated to Paul
Bruckman, in recognition of his forty years of significant contributions to The Fibonacci Quar-
terly. Paul is a Sustaining Member of The Fibonacci Association and his support for, and loy-
alty to, the FQ is worthy of mention. Paul published his first FQ paper in 1972. In that same
year, Paul also began solving virtually all the problems proposed in the EPS (E:Elementary)
and in the APS sections of FQ. From 1972 to the present, Paul has published 20 articles in
FQ. He is also to be credited with 35 proposals and in excess of 750 solutions in the EPS
section of the journal, in parallel with 82 proposals and in excess of 310 solutions in the APS
section. Paul’s enthusiasm for FQ has never waned and his name is now an integral part of
the history and lore of FQ.

PROBLEMS PROPOSED IN THIS ISSUE

H-704 Proposed by Paul S. Bruckman, Nanaimo, Canada
Prove the following identity:

bn/4c
∑

k=0

(

n− 2k

2k

)

2n+1−4k = Pn+1 + n+ 1,

where {Pn}n≥0 is the ordinary Pell sequence.

H-705 Proposed by Paul S. Bruckman, Nanaimo, Canada
Define the following sum

Sn(a, b) =

b(n−b)/ac
∑

k=0

(

n

ak + b

)

,
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where n, a and b are integers with 0 ≤ b < a ≤ n. Prove the following relation: Sam+2b(a, b) =
2Sam+2b−1(a, b), m = 1, 2, . . ..

H-706 Proposed by Paul S. Bruckman, Nanaimo, Canada
Define the following sum:

Sn =
1

2

(

3n
∑

k=n+1

1

k2 − n2

)−1

.

Show that S(n) ∼ π(n) as n → ∞, where π(n) is the counting function of the primes p ≤ n.

H-707 Proposed by Paul S. Bruckman, Nanaimo, Canada
Write [P ] = [a1, a2, . . . , an], where ak = an+1−k, k = 1, 2, . . . , n; then [P ] is a palin-

dromic simple continued fraction (scf); here, the ak’s are positive integers. Also, write
[0, P ∗] = [0, a1, . . . , an−1]. Finally, let [P ] denote the infinite periodic scf [P,P, P, . . .]. Prove
the following: [P ]− [0, P ] = [P ]− [0, P ∗].

SOLUTIONS

Binomial Sums With Fibonacci Numbers

H-685 Proposed by N. Gauthier, Kingston, ON
(Vol. 47, No. 1, February 2009/2010)

For k a positive integer prove the following identities:

a)

k
∑

m=1

(

2k −m− 1

k − 1

)

(F2m + Fm) = F3k;

b)
k
∑

m=1

m

k

(

2k −m− 1

k − 1

)

(F2m+2 − Fm+1) = F3k;

c)
k
∑

m=1

2m

22k

(

2k −m− 1

k − 1

)

(F2m + (−1)m+1Fm) = Fk;

d)

k
∑

m=1

2mm

22k+1k

(

2k −m− 1

k − 1

)

(F2m+2 + (−1)m+1Fm+1) = F3k.

Solution by Paul Bruckman

Let

Uk(x) =
k
∑

m=1

(

2k −m− 1

k − 1

)

xm, k = 1, 2, . . . , with U0(x) = 0. (1)

Note that

Uk(x) =

k−1
∑

m=0

(

m+ k − 1

m

)

xk−m. (2)

We prove the following recurrence relation

(x− 1)Uk(x)− x2Uk−1(x) =
x2

2
δk,1 +

1

2

(

2k − 2

k − 1

)

x(x− 2), k = 1, 2, . . . , (3)

where δa,b is the Kronecker δ-function which equals 1 if a = b and 0, otherwise.
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First, if k = 1, we have U1(x) = x. The recurrence in (3) yields:

(x− 1)U1(x) =
x2

2
+

1

2
x(x− 2) = x2 − x = x(x− 1),

so U1(x) = x, the correct value.
Now assume that k ≥ 2. The left side of (3) becomes

k−1
∑

m=0

(

m+ k − 1

m

)

xk+1−m −
k−1
∑

m=0

(

m+ k − 1

m

)

xk−m −
k−2
∑

m=0

(

m+ k − 2

m

)

xk+1−m

=
k−1
∑

m=0

(

m+ k − 1

m

)

xk+1−m −
k
∑

m=1

(

m+ k − 2

m− 1

)

xk+1−m −
k−2
∑

m=0

(

m+ k − 2

m

)

xk+1−m

= xk+1 − xk+1 +

(

2k − 2

k − 1

)

x2 −
(

2k − 2

k − 1

)

x−
(

2k − 3

k − 2

)

x2

+

k−2
∑

m=1

xk+1−m

((

m+ k − 1

m

)

−
(

m+ k − 2

m− 1

)

−
(

m+ k − 2

m

))

= 0 +

(

2k − 3

k − 1

)

x2 −
(

2k − 2

k − 1

)

x+ 0 =
1

2

(

2k − 2

k − 1

)

(x2 − 2x),

which completes the proof of (3).

Proof of a). Let

Sk =
k
∑

m=1

(

2k −m− 1

k − 1

)

(F2m + Fm). (4)

Then

Sk =
1√
5

(

Uk(α
2)− Uk(β

2) + Uk(α)− Uk(β)
)

, (5)

by the Binet formula for Fn, where (α, β) = ((1+
√
5)/2, (1−

√
5)/2). Now substituting x = α

in (3) gives U1(α) = α. Also, if k ≥ 2,

1

α
Uk(α) = α2Uk−1(α) +

1

2

(

2k − 2

k − 1

)

β; or

Uk(α) = α3Uk−1(α)−
1

2

(

2k − 2

k − 1

)

and likewise Uk(β) = β3Uk−1(β)−
1

2

(

2k − 2

k − 1

)

. (6)

Therefore, by an easy induction

Uk(α) = α3k−2 − 1

2

k−1
∑

j=1

α3(k−1−j)

(

2j

j

)

and Uk(β) = β3k−2 − 1

2

k−1
∑

j=1

β3(k−1−j)

(

2j

j

)

. (7)

Then

1√
5
(Uk(α) − Uk(β)) = F3k−2 −

1

2

k−1
∑

j=1

(

2j

j

)

F3(k−1−j). (8)

Now setting x = α2 in (3) yields the following recurrence

Uk(α
2) = α3Uk−1(α

2) +
1

2

(

2k − 2

k − 1

)

and also Uk(β
2) = β3Uk−1(β

2) +
1

2

(

2k − 2

k − 1

)

. (9)
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Note that U1(α
2) = α2. Again, induction yields the following

Uk(α
2) = α3k−1 +

1

2

k−1
∑

j=1

α3(k−1−j)

(

2j

j

)

and Uk(β
2) = β3k−1 +

1

2

k−1
∑

j=1

β3(k−1−j)

(

2j

j

)

. (10)

Then

1√
5
(Uk(α

2)− Uk(β
2)) = F3k−1 +

1

2

k−1
∑

j=1

(

2j

j

)

F3(k−1−j). (11)

Now combining (8) and (11), we see from (5) that Sk = F3k−2 + F3k−1 = F3k.

Proof of b). Let

Vk(x) =

k
∑

m=1

m

k

(

2k −m− 1

k − 1

)

xm, k = 1, 2, . . . , with V0(x) = 0. (12)

Then

Vk(x) =
k−1
∑

m=0

(

k +m− 1

k − 1

)(

k −m

m

)

xk−m =
k−1
∑

m=0

(

k +m− 1

k − 1

)

xk−m−
k−1
∑

m=1

(

k +m− 1

k

)

xk−m.

Since

Uk(x) =

k−1
∑

m=0

(

k +m− 1

k − 1

)

xk−m =

k−1
∑

m=0

(

k +m− 1

m

)

xk−m,

we find that for k > 0 and x 6= 0,

Vk(x) = Uk(x)−
Uk+1(x)

x2
+

1

x

(

2k

k

)

+

(

2k − 1

k

)

. (13)

Now let

Tk =

k
∑

m=1

m

k

(

2k −m− 1

k − 1

)

(F2m+2 − Fm+1). (14)

We then see that

Tk =
1√
5

(

α2Vk(α
2)− β2Vk(β

2)− αVk(α) + βVk(β)
)

. (15)

We return to (13) and substitute the results of (7). Then

Vk(α) = Uk(α) − β2Uk+1(α)− β

(

2k

k

)

+

(

2k − 1

k

)

= α3k−2 − 1

2

k−1
∑

j=1

α3(k−1−j)

(

2j

j

)

− β2α3k+1 +
β2

2

k
∑

j=1

α3(k−j)

(

2j

j

)

− β

(

2k

k

)

+

(

2k − 1

k

)

,

or, after simplification,

Vk(α) = −α3k−3 − β

2

k−1
∑

j=1

α3(k−1−j)

(

2j

j

)

+
α

2

(

2k

k

)

+

(

2k − 1

k

)

. (16)
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Similarly,

Vk(β) = −β3k−3 − α

2

k−1
∑

j=1

β3(k−1−j)

(

2j

j

)

+
β

2

(

2k

k

)

+

(

2k − 1

k

)

. (17)

Also, in (13), we substitute the results of (10) and obtain, after simplification,

Vk(α
2) = α3k−3 +

β2

2

k−1
∑

j=1

α3(k−1−j)

(

2j

j

)

− β

2

(

2k

k

)

+

(

2k − 1

k

)

. (18)

Similarly,

Vk(β
2) = β3k−3 +

α2

2

k−1
∑

j=1

β3(k−1−j)

(

2j

j

)

− α

2

(

2k

k

)

+

(

2k − 1

k

)

. (19)

Now, combining the results in (16)–(19), the formula in (15) shows that Tk

√
5 equals

α3k−1 − β3k−1 +
1

2

k−1
∑

j=1

(

α3(k−1−j) − β3(k−1−j)
)

(

2j

j

)

+ (α− β)

(

2k

k

)

+ (α2 − β2)

(

2k − 1

k

)

+

α3k−2 − β3k−2 − 1

2

k−1
∑

j=1

(

α3(k−1−j) − β3(k−1−j)
)

(

2j

j

)

− (α2 − β2)

(

2k

k

)

+ (α− β)

(

2k − 1

k

)

,

or

Tk = F3k−1 + F3k−2 + (F1 − F2)

((

2k

k

)

−
(

2k − 1

k

))

= F3k.

Proof of c). Let

Wk(x) =

k
∑

m=1

2m

22k

(

2k −m− 1

k − 1

)

xm, k = 1, 2, . . . , with W0(x) = 0. (20)

We note that

Wk(x) =
Uk(2x)

4k
. (21)

The recurrence in (3) is then transformed as follows:

(2x− 1)Wk(x) = x2Wk−1(x) +
x

22k−1

(

xδk,1 + (x− 1)

(

2k − 2

k − 1

))

. (22)

Next, let

Yk =

k
∑

m=1

2m

22k

(

2k −m− 1

k − 1

)

(

F2m + (−1)m+1Fm

)

. (23)

We see that

Yk =
1√
5

(

Wk(α
2)−Wk(β

2)−Wk(−α) +Wk(−β)
)

. (24)

Setting x = −α in (22), we obtain

−α3Wk(−α) = α2Wk−1(−α) +
α2

22k−1

(

δk,1 + α

(

2k − 2

k − 1

))

,

or

Wk(−α) = βWk−1(−α) +
1

22k−1

(

βδk,1 −
(

2k − 2

k − 1

))

. (25)
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Similarly, setting x = −β in (22) yields

Wk(−β) = αWk−1(−β) +
1

22k−1

(

αδk,1 −
(

2k − 2

k − 1

))

. (26)

Likewise, setting x = α2 in (22) yields:

α3Wk(α
2) = α4Wk−1(α

2) +
α3

22k−1

(

αδk,1 +

(

2k − 2

k − 1

))

,

or

Wk(α
2) = αWk−1(α

2) +
1

22k−1

(

αδk,1 +

(

2k − 2

k − 1

))

. (27)

Similarly, setting x = β2 in (22) yields

Wk(β
2) = βWk−1(β

2) +
1

22k−1

(

βδk,1 +

(

2k − 2

k − 1

))

. (28)

Induction on (25) and (26), respectively, leads to the following results for k > 0:

Wk(−α) =
1

2
βk−2 −

k−1
∑

j=1

βk−1−j

22j+1

(

2j

j

)

; Wk(−β) =
1

2
αk−2 −

k−1
∑

j=1

αk−1−j

22j+1

(

2j

j

)

. (29)

Also, induction on (27) and (28), respectively, leads to the following results for k > 0;

Wk(α
2) =

1

2
αk+1 +

k−1
∑

j=1

αk−1−j

22j+1

(

2j

j

)

; Wk(β
2) =

1

2
βk+1 +

k−1
∑

j=1

βk−1−j

22j+1

(

2j

j

)

. (30)

Combining the results of (29) and (30) into the formula (24) yields:

Yk =
1

2
Fk+1 +

k−1
∑

j=1

Fk−1−j

22j+1

(

2j

j

)

+
1

2
Fk−2 −

k−1
∑

j=1

Fk−1−j

22j+1

(

2j

j

)

= Fk.

Proof of d). Let

Zk(x) =
k
∑

m=1

2mm

22k+1k

(

2k −m− 1

k − 1

)

xm, k = 1, 2, . . . , with Z0(x) = 0. (31)

We note that

Zk(x) =
Vk(2x)

22k+1
. (32)

Returning to (13), expressing Vk(x) in terms of Uk(x) and also using (3), we may verify, after
some simplifications, that Vk(x) satisfies the following recurrence:

(x− 1)Vk(x)− x2Vk−1(x) = −2x

(

2k − 2

k − 1

)

+
x

2

(

2k

k

)

, k = 2, 3, . . . , and V1(x) = x. (33)

Setting x = −2α in (33) yields the following recurrence valid for all k ≥ 2:

Vk(−2α) = 4βVk−1(−2α) − 4β2

(

2k − 2

k − 1

)

+ β2

(

2k

k

)

. (34)

Also, V1(−2α) = −2α. Then, by induction on (34), we obtain

Vk(−2α) = −4kβk−1 + β

(

2k

k

)

+

k
∑

j=1

(4β)k−j

(

2j

j

)

. (35)
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Likewise,

Vk(−2β) = −4kαk−1 + α

(

2k

k

)

+

k
∑

j=1

(4α)k−j

(

2j

j

)

. (36)

Also, setting x = 2α2 in (33) yields the recurrence

Vk(2α
2) = 4αVk−1(2α

2) + 4β

(

2k − 2

k − 1

)

− β

(

2k

k

)

. (37)

Similarly,

Vk(2β
2) = 4βVk−1(2β

2) + 4α

(

2k − 2

k − 1

)

− α

(

2k

k

)

. (38)

Induction on (37) yields

Vk(2α
2) = 4kαk−1 + β2

(

2k

k

)

− β3
k
∑

j=1

(4α)k−j

(

2j

j

)

. (39)

Likewise

Vk(2β
2) = 4kβk−1 + α2

(

2k

k

)

− α3
k
∑

j=1

(4β)k−j

(

2j

j

)

. (40)

Now make the following definition:

Xk =
k
∑

m=1

2mm

22k+1k

(

2k −m− 1

k − 1

)

(

F2m+2 + (−1)m+1Fm+1

)

. (41)

We see that

Xk =
1√
5

(

α2Zk(α
2)− β2Zk(β

2)− αZk(−α) + βZk(−β)
)

. (42)

In light of (32), the following is also true

22k+1Xk

√
5 = α2Vk(2α

2)− β2Vk(2β
2)− αVk(−2α) + βVk(−2β). (43)

Substituting the results of (35)–(36) and (39)–(40) into (43) yields the following, after consid-
erable cancellation of terms and other simplification:

22k+1Xk = 4k(Fk+1 + Fk−2) = 22k+1Fk, or Xk = Fk.

This completes, and also corrects, the indicated result for Part d).

Also solved by Eduardo H. M. Brietzke and the proposer.

Summing Products of Fibonacci Numbers

H-686 Proposed by José Luis D́ıaz-Barero, Barcelona, Spain
(Vol. 47, No. 1, February 2009/2010)

Let n be a positive integer. Compute
∑

1≤i<j≤n

FiFj(Fi − Fj)
2.

Solution by Paul Bruckman
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Let Sk denote
∑n

i=1 F
k
i for k = 1, 2, 3, 4, where we treat n as fixed. If T denotes

∑

1≤i<j≤n FiFj(Fi − Fj)
2, we see that

T =
∑

1≤i<j≤n

F 3
i Fj − 2

∑

1≤i<j≤

F 2
i F

2
j +

∑

1≤i<j≤n

FiF
3
j

=
∑

1≤i 6=j≤n

F 3
i Fj − 2

∑

1≤i<j≤n

F 2
i F

2
j

= S1S3 − S4 − (S2
2 − S4) = S1S3 − S2

2 .

Now the following results are well-known

S1 = Fn+2 − 1, S2 = FnFn+1.

A lesser known result which may be derived from the Binet formula is

S3 =
1

10
(F3n+2 − 6(−1)nFn−1 + 5) .

It appears in [1]. An alternative and equivalent formulation is the following:

S3 =
1

2

(

FnF
2
n+1 − (−1)nFn−1 + 1

)

.

Therefore,

T = (Fn+2 − 1)
1

2
(FnF

2
n+1 − (−1)nFn−1 + 1)− (FnFn+1)

2

=
1

2

(

Fn+2F
2
n+1Fn − (−1)nFn+2Fn−1 + Fn+2 − FnF

2
n+1 + (−1)nFn−1 − 1− 2F 2

nF
2
n+1

)

=
1

2

(

F 2
n+1FnFn−1 − (−1)nFn+2Fn−1 + Fn+2 − FnF

2
n+1 + (−1)nFn−1 − 1

)

.
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