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PROBLEMS PROPOSED IN THIS ISSUE

H-739 Proposed by Hideyuki Ohtsuka, Saitama, Japan

Define the generalized Fibonomial coefficient

(
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k

)

F ;m
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=
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Fmj
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Prove that
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=
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∑
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.

H-740 Proposed by Saeid Alikhani, Yazd, Iran and Emeric Deutsch, Brooklyn,
New York

Given a simple graph G with vertex set V , a dominating set of G is any subset S of V
such that every vertex in V \S is adjacent to at least one vertex in S. Find the number of
dominating sets of the path Pn with n vertices.

H-741 Proposed by Charlie Cook, Sumter, South Carolina
If n ≥ 2 and m ≥ 1, then

m(Ln − Fn)(LnFn)
(m−1)/2 ≤ Lm

n − Fm
n ,

where Ln and Fn are the Lucas and Fibonacci numbers, respectively.

H-742 Proposed by H. Ohtsuka, Saitama, Japan
For positive integers n, m and p with p < m find a closed form expression for

n
∑

k1,...,km=1

F2k1 · · ·F2kmF2(k2
1
+···+k2p−k2p+1

−···−k2m).
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SOLUTIONS

Convergent Series Involving Fibonacci and Lucas Numbers With Rational Sums

H-713 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 50, No. 1, February 2012)

Determine

(1)

∞
∑

k=1

2kF2k

L3·2k
and (2)

∞
∑

k=1

2kF 3
2k

L2·2kL3·2k
.

Solution by the proposer

The following identities are known:

(i) F2n = FnLn;
(ii) L2

n = L2n + 2(−1)n;
(iii) Ln+m + (−1)mLn−m = LnLm;
(iv) Ln+m − (−1)mLn−m = 5FnFm.

Next, we show the identity

∞
∑

k=1

2kF2km

L2kn + L2km

=
2F2m

L2n − L2m
(for n > m ≥ 1). (A)

Using (i) and (ii), we have

F2km

L2kn − L2km

− F2km

L2kn + L2km

=
2F2kmL2km

L2
2kn

− L2
2km

=
2F2k+1m

L2k+1n − L2k+1m

.

Thus,
F2km

L2kn + L2km

=
F2km

L2kn − L2km

− F2k+1m

L2k+1n − L2k+1m

.

Therefore,

N
∑

k=1

2kF2km

L2kn + L2km

=

N
∑

k=1

(

2kF2km

L2kn − L2km

− 2k+1F2k+1m

L2k+1n − L2k+1m

)

=
2F2m

L2n − L2m
− 2N+1F2N+1m

L2N+1n − L2N+1m

.

Here,

lim
N→∞

2N+1F2N+1m

L2N+1n − L2N+1m

= lim
N→∞

2N+1(α2N+1m − β2N+1m)√
5(α2N+1n + β2N+1n − α2N+1m − β2N+1m)

= lim
N→∞

2N+1α2N+1m

√
5(α2N+1n − α2N+1m)

= lim
N→∞

2N+1

√
5(α2N+1(n−m) − 1)

= 0.

Therefore, we obtain identity (A).
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(1) Using (i), (iii) and (A), we have

∞
∑

k=1

2kF2k

L3·2k
=

∞
∑

k=1

2kF2kL2k

L3·2kL2k
=

∞
∑

k=1

2kF2·2k

L4·2k + L2·2k
=

2F4

L8 − L4
=

3

20
.

(2) Using (i), (iii), (iv) and (A), we have

∞
∑

k=1

2kF 3
2k

L2·2kL3·2k
=

∞
∑

k=1

2kF 3
2k
L2k

L2·2kL3·2kL2k
=

1

5

∞
∑

k=1

2kF2k · (5F2·2kF2k)

L2·2kL3·2kL2k

=
1

5

∞
∑

k=1

2kF2k(L3·2k − L2k)

L2·2kL3·2kL2k

=
1

5

(

∞
∑

k=1

2kF2k

L2·2kL2k
− 2kF2k

L3·2kL2·2k

)

=
1

5

∞
∑

k=1

(

2kF2k

L3·2k + L2k
− 2kF2k

L5·2k + L2k

)

=
1

5

(

2F2

L6 − L2
− 2F2

L10 − L2

)

=
7

300
.

Also solved by Paul S. Bruckman.

Evaluating a Sum Involving Binomial Coefficients

H-714 Proposed by N. Gauthier, The Royal Military College of Canada, Kingston,
ON
(Vol. 50, No. 1, February 2012)

Let n be a positive integer. Find a closed–form expression for the following sum:

S(n) =
n
∑

k=1

k2
(

2n− 2k

n− k

)(

2k

k

)

.

Solution by Helmut Prodinger, Stellenbosch, South Africa

a) Maple can evaluate the sum.

b) A human can proceed like that:
Consider the generating function of the sequence:

S =
∑

n≥0

zn
n
∑

k=0

k2
(

2n− 2k

n− k

)(

2k

k

)

=
∑

k≥0

zkk2
(

2k

k

)

·
∑

k≥0

zk
(

2k

k

)

=
2z(2z + 1)

(1− 4z)5/2
1

(1− 4z)1/2
=

2z(2z + 1)

(1− 4z)3
.
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Further,

[zn]S = 4[zn−2](1− 4z)−3 + 2[zn−1](1− 4z)−3

= 4n−1

(

n

2

)

+ 2 · 4n−1

(

n+ 1

2

)

=
4n−1

2
(n(n− 1) + 2(n + 1)n) =

4n

8
n(3n+ 1).

Also solved by Paul S. Bruckman, Kenneth B. Davenport, E. Killic and I. Akkus
(jointly, two solutions), Anastasios Kotronis, Harris Kwong, Ángel Plaza and the
proposer. Amos E. Gera provided an equivalent answer without a proof.

Sums of Squares of Tribonacci Numbers

H-715 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 50, No. 1, February 2012)

The Tribonacci numbers Tn satisfy

T0 = 0, T1 = T2 = 1, Tn+3 = Tn+2 + Tn+1 + Tn for n ≥ 0.

Find explicit formulas for

(1)

n
∑

k=1

T 2
k and (2)

n
∑

k=1

(T 2
k − Tk+1Tk−1)

2.

Solution by Zbigniew Jakubczyk, Warsaw, Poland

Let

S =

n
∑

k=1

T 2
k and T =

n
∑

k=2

TkTk−2.

We have Tk = Tk−1 + Tk−2 + Tk−3 for k ≥ 3, so
n
∑

k=3

TkTk−1 =

n
∑

k=3

T 2
k−1 +

n
∑

k=3

Tk−2Tk−1 +

n
∑

k=3

Tk−1Tk−3.

We get

Tn−1Tn − 1 = S − T 2
n − 1 +A− TnTn−2 or Tn(Tn−2 + Tn−1 + Tn) = S +A.

Thus,
TnTn+1 = S +A. (A)

It follows from the recurrence relation that Tk − Tk−2 = Tk−1 + Tk−3. Next,

n
∑

k=3

T 2
k +

n
∑

k=3

T 2
k−2 − 2

n
∑

k=3

TkTk−2 =

n−1
∑

k=3

T 2
k−1 +

n
∑

k=3

T 2
k−3 + 2

n
∑

k=3

Tk−1Tk−3.

Thus,

S − 2 + S − T 2
n−1 − T 2

n − 2A = S − 1− T 2
n + S − T 2

n − T 2
n−1 − T 2

n−2 + 2(A− TnTn−2),

giving

A =
(Tn + Tn−2)

2 − 1

4
=

(Tn+1 − Tn−1)
2 − 1

4
. (B)
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Using (B) in (A), we get

S =
4TnTn+1 − (Tn+1 − Tn−1)

2 + 1

4
.

To find the second formula, we will consider the sequence

Rk = T 2
k − Tk−1Tk+1 for k ≥ 1.

We’ll prove that
Rk+3 = −Rk+2 −Rk+1 +Rk. (C)

We have

−Rk+2 −Rk+1 +Rk = −T 2
k+2 + Tk+3Tk+1 − T 2

k+1 + Tk+2Tk + T 2
k − Tk−1Tk+1

= −T 2
k+2 + Tk+3Tk+1 − T 2

k+1 + Tk+2Tk + T 2
k − (Tk+2 − Tk+1 − Tk)Tk+1

= −T 2
k+2 + Tk+3Tk+1 + Tk+2Tk + T 2

k − Tk+2(Tk+4 − Tk+3 − Tk+2) + Tk+1Tk

= Tk+3Tk+1 + Tk+2Tk+3 − Tk+2Tk+4 + Tk(Tk + Tk+1 + Tk+2)

= Tk+3(Tk+1 + Tk+2 + Tk)− Tk+2Tk+4 = T 2
k+3 − Tk+2Tk+4 = Rk+3.

Let

B =

n
∑

k=1

R2
k and C =

n
∑

k=1

RkRk+2.

Because Rk = Rk+1 +Rk+2 +Rk+3, we get
n
∑

k=1

RkRk+1 =

n
∑

k=1

R2
k+1 +

n
∑

k=1

Rk+1Rk+2 +

n
∑

k=1

Rk+1Rk+3.

So,
R1R2 = B +R2

n+1 −R2
1 +Rn+1Rn+2 + C −R1R3 +Rn+1Rn+3.

But R1 = 1, R2 = −1, R3 = 0. Thus,

B + C +Rn+1(Rn+1 +Rn+2 +Rn+3) = 0 giving B + C +Rn+1Rn = 0. (D)

From (C), we have
Rk+3 +Rk+1 = Rk −Rk+2,

so
n
∑

k=1

R2
k+3 + 2

n
∑

k=1

Rk+3Rk+1 +
n
∑

k=1

R2
k+1 =

n
∑

k=1

R2
k − 2

n
∑

k=1

RkRk+2 +
n
∑

k=1

R2
k+2,

or
R2

n+3 + 2(C +Rn+1Rn+3 −R2R3) +R2
n+1 = R2

1 − 2C +R2
3,

which gives

C =
1− (Rn+3 +Rn+1)

2

4
.

Using this last equation and (D), we get

B =
(Rn+3 +Rn+1)

2 − 1− 4RnRn+1

4
.

Also solved by Paul S. Bruckman, Kenneth B. Davenport, Nazmiye Yilmaz,
Yasin Yazlik and Necati Taskara (the last three jointly), and the proposer. Abbas
Rouholamini provided an equivalent answer for (1) without a proof.
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Convolutions with Catalan Numbers

H-716 Proposed by N. Gauthier, The Royal Military College of Canada, Kingston,
ON
(Vol. 50, No. 2, May 2012)

Let n be a nonnegative integer and let Cn be the nth Catalan number. Prove the following
identity:

n
∑

k=0

k3Cn−kCk =
n

2
((n2 + 3n+ 3)Cn+1 − 3 · 4n).

Solution by Hideyuki Ohtsuka, Saitama, Japan

The following identity is well-known

n
∑

k=0

CkCn−k = Cn+1. (1)

We have
n
∑

k=0

kCn−kCk =

n
∑

k=0

(n− k)CkCn−k.

Therefore,
n
∑

k=0

kCn−kCk =
n

2

n
∑

k=0

Cn−kCk =
n

2
Cn+1, (2)

(by (1)). We have

4n =

n
∑

k=0

(

2n− 2k

n− k

)(

2k

k

)

(see [1](5.39))

=

n
∑

k=0

(n− k + 1)(k + 1)Cn−kCk

= (n+ 1)

n
∑

k=0

Cn−kCk + n

n
∑

k=0

kCn−kCk −
n
∑

k=0

k2Cn−kCk

=
n2 + 2n + 2

2
Cn+1 −

n
∑

k=0

k2Cn−kCk (by (1) and (2)).

Thus,
n
∑

k=0

k2Cn−1Ck =
n2 + 2n + 2

2
Cn+1 − 4n. (3)

We have
n
∑

k=0

k3Cn−kCk =
n
∑

k=0

(n− k)3CkCn−k.
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Therefore, we have
n
∑

k=0

k3Cn−kCk =
1

2

(

n3
n
∑

k=0

Cn−kCk − 3n2
n
∑

k=0

kCn−kCk + 3n
n
∑

k=0

k2Cn−kCk

)

=
n

2

(

(n2 + 3n+ 3)Cn+1 − 3 · 4n
)

,

by (1), (2) and (3).
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Also solved by Wouter Cames van Batenburg, Paul S. Bruckman, M. N. Desh-
pande and the proposer.

Obituary. The Editor is deeply saddened to announce that the long time contributor and
friend of this section, Paul S. Bruckman, passed away on May 3, 2013. This Department
will miss Paul’s contributions some of which are described in the preamble of the Advanced
Problem Section of FQ volume 49.3, (August, 2011) which itself is a tribute to Paul.

THE SIXTEENTH INTERNATIONAL CONFERENCE ON

FIBONACCI NUMBERS AND THEIR APPLICATIONS

July 20-July 26, 2014

Rochester Institute of Technology, Rochester, NY

LOCAL ORGANIZER
Peter Anderson

fibonacci.2014@gmail.com

CONFERENCE INFORMATION

The purpose of the conference is to bring together people from all branches of mathe-
matics and science with interests in recurrence sequences, their applications and general-
izations, and other special number sequences. For the conference Proceedings, manuscripts
that include new, unpublished results (or new proofs of known theorems) will be consid-
ered. More information regarding registration, accommodations, transportation, submis-
sion of manuscripts, and the conference program will be forthcoming and will be posted at
http://www.fq.math.ca/conferences/.

Join The Fibonacci Association: https://www.acteva.com/go/fibonacci
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