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PROBLEMS PROPOSED IN THIS ISSUE

H-842 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Given an integer n ≥ 0, find a closed form expression for the sum

∑

a+b+c=n
a,b,c≥0

Fa+bFb+cFc+a.

H-843 Proposed by Hideyuki Ohtsuka, Saitama, Japan
If integers a and b have the same parity with a > b > 0 and c is odd, show that

(Fa − Fb) | (Fac − Fbc) and (La − Lb) | (Lac − Lbc).

H-844 Proposed by Robert Frontczak, Stuttgart, Germany
Let Bn = Bn(α, β) be a generalized balancing number given by B0(α, β) = α, B1(α, β) = β

and for n ≥ 2,
Bn(α, β) = 6Bn−1(α, β) −Bn−2(α, β).

Prove that
2n
∑

k=0

(

4n

2k

)

B2k(α, β) = (26n−1 + 24n−1)B2n(α, β)

and
⌊(4n−1)/2⌋
∑

k=0

(

4n

2k + 1

)

B2k(α, β) = (26n−1 − 24n−1)B2n(α, β).
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H-845 Proposed by D. M. Bătineţu, Bucharest, Romania, and N. Stanciu, Buzău,
Romania

Compute

lim
n→∞

(

lim
x→∞

(

(f(x+ 1))Ln/((x+1)Fn+1) − (f(x))Ln/(xLn+1)
)

xLn−1/Ln+1

)

,

where f : R∗
+ → R

∗
+ is a function that satisfies limx→∞ f(x+ 1)/(xf(x)) = a ∈ R

∗
+.

SOLUTIONS

Evaluating the sum of a series of reciprocals

H-810 Proposed by Ángel Plaza, Gran Canaria, Spain
(Vol. 55, No. 3, August 2017)

Prove that
∞
∑

n=3

1

L4
n − 25

=
5

63
− 1

6
√
5
.

Solution by the proposer

First note that L4
n−25 = Ln−2Ln−1Ln+1Ln+2 and also that Ln =

Ln+2 + Ln−2

3
. Therefore,

1

L4
n − 25

=
1/3

Ln−2Ln−1LnLn+1
+

1/3

Ln−1LnLn+1Ln+2
. (1)

Taking into account relation (23) in [1]:

n−1
∑

i=1

1

LiLi+1Li+2Li+3
= −1

8
+

1

10

(

Fn−1

Ln
+

3Fn

Ln+1
+

Fn+1

Ln+2

)

and letting n approach infinity, we get
∞
∑

n=1

1

LnLn+1Ln+2Ln+3
=

1

40

(

5− 2
√
5
)

.

Therefore,
∞
∑

n=3

1/3

Ln−2Ln−1LnLn+1
=

1

120

(

5− 2
√
5
)

,

from where the desired sum follows via (1). �

[1] R. S. Melham, Finite sums that involve reciprocal of products of generalized Fibonacci

numbers, Integers, 13 (2013), A40.

Also solved by Brian Bradie, Dmitry Fleischman, Hideyuki Ohtsuka, and Raphael
Schumacher.
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Evaluating the sum of another series of reciprocals

H-811 Proposed by Ángel Plaza, Gran Canaria, Spain
(Vol. 55, No. 3, August 2017)

For any positive integer k, let {Fk,n}n≥0 be defined by Fk,n+2 = kFk,n+1 + Fk,n for n ≥ 0
with Fk,0 = 0, Fk,1 = 1. Prove that

∞
∑

n=0

1

1 + Fk,2n+1
=

√
k2 + 4

2k
.

Solution by Brian Bradie

Let k be a positive integer, and put αk := (k +
√
k2 + 4)/2. Then,

Fk,n =
1√

k2 + 4

(

αn
k −

(

− 1

αk

)n)

and Fk,2n+1 =
1√

k2 + 4

(

α2n+1
k +

1

α2n+1
k

)

.

Moreover,

1

1 + Fk,2n+1
=

√
k2 + 4α2n+1

k

α4n+2
k +

√
k2 + 4α2n+1

k + 1

=

√
k2 + 4

k

(

αk

α2n+1
k + αk

−
1
αk

α2n+1
k + 1

αk

)

.

Since
αk

α2n+3
k + αk

=

1
αk

α2n+1
k + 1

αk

,

it follows that the desired series telescopes and so its value is
∞
∑

n=0

1

1 + Fk,2n+1
=

√
k2 + 4

k
· αk

αk + αk
=

√
k2 + 4

2k
.

Also solved by Dmitry Fleischman, Hideyuki Ohtsuka, Raphael
Schumacher, and the proposer.

An identity with sums of products of binomial coefficients

H-812 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 55, No. 3, August 2017)

Prove that
∑

i+j=Fn+1

(

Fn+1

i

)(

Fn

i

)(

Ln

j

)

=
∑

i+j=Fn+1

(

Fn

i

)(

Ln

i

)(

2j

Fn+1

)

.
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Solution by the proposer

Let a = Fn+1, b = Fn, and c = Ln. Note that b+ c = 2a. We have

(

b

i

)(

c

j

)(

i

k

)(

j

k

)

=
b!

i!(b− i)!
· c!

j!(c − j)!
· i!

k!(i − k)!
· j!

k!(j − k)!

=
b!

k!(b− k)!
· c!

k!(c− k)!
· (b− k)!

(b− i)!(i − k)!
· (c− k)!

(c− j)!(j − k)!

=

(

b

k

)(

c

k

)(

b− k

b− i

)(

c− k

c− j

)

.

Using Vandermonde’s identity and the above identity, we have

∑

i+j=a

(

a

i

)(

b

i

)(

c

j

)

=
∑

i+j=a

(

b

i

)(

c

j

) a
∑

k=0

(

i

k

)(

j

k

)

=

a
∑

k=0

(

b

k

)(

c

k

)

∑

i+j=a

(

b− k

b− i

)(

c− k

c− j

)

=
a
∑

k=0

(

b

k

)(

c

k

)(

b+ c− 2k

b+ c− a

)

=
a
∑

k=0

(

b

k

)(

c

k

)(

2a− 2k

a

)

=
∑

i+j=a

(

b

i

)(

c

i

)(

2j

a

)

.

A cyclic inequality

H-813 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai Stanciu,
Buzău, Romania (Vol. 55, No. 4, November 2017)

If xk > 0 for k = 1, . . . , n and m ≥ 0 is an integer, prove that
(

n
∑

k=1

1

xk

)

∑

cyclic

x1x2x3
Lmx2x3 + Lm+1x3x1 + Lm+2x1x2

≥ n2

2Lm+2

and that the same inequality holds with the Lucas numbers replaced by the Fibonacci numbers.

Solution by Wei-Kai Lai and John Risher

We will prove that for positive A, B, C such that A+B = C, the inequality

(

n
∑

k=1

1

xk

)







n
∑

i=1
cyclic

xixi+1xi+2

Axi+1xi+2 +Bxi+2xi + Cxixi+1






≥ n2

2C
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holds. According to the AM-HM inequality,
n
∑

i=1
cyclic

xixi+1xi+2

Axi+1xi+2 +Bxi+2xi + Cxixi+1
≥ n2

∑n
i=1
cyclic

(

A
xi

+ B
xi+1

+ C
xi+2

)

=
n2

(

∑n
i=1

1
xi

)

(A+B + C)
=

n2

(

∑n
i=1

1
xi

)

(2C)
.

Therefore,
(

n
∑

k=1

1

xk

)







n
∑

i=1
cyclic

xixi+1xi+2

Axi+1xi+2 +Bxi+2xi + Cxixi+1






≥ n2

2C

as claimed, thus proving the two inequalities in the original problem.

Also solved by Dmitry Fleischman and the proposers.

Errata: For Advanced Problem H-838 (Vol. 57, No. 2, February 2019) “Ln−(n+j)”
should be “Ln−(r+j)”. Furthermore, at the beginning of the published solution to Advanced
Problem H-809 (Vol. 57, No. 2, February 2019) in the formulas for p2m and p2m+1 in the
right sides, the exponents of L should be “2k − 1”, “2k”, and “2m + 1” instead of “k − 1”,
“k”, and “m+ 1”, respectively. The editor apologizes for these inconveniences.
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