
ELEMENTARY PROBLEMS AND SOLUTIONS

EDITED BY
HARRIS KWONG

Please submit solutions and problem proposals to Dr. Harris Kwong, Department of Mathe-
matical Sciences, SUNY Fredonia, Fredonia, NY, 14063, or by email at kwong@fredonia.edu.
If you wish to have receipt of your submission acknowledged by mail, please include a self-
addressed, stamped envelope.

Each problem or solution should be typed on separate sheets. Solutions to problems in this
issue must be received by February 15, 2022. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results.”

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1291 Proposed by Diego Rattaggi, Realgymnasium Rämibühl, Zürich,
Switzerland.

Let m ∈ N. Express the value of
∞∑
n=1

(α2n−1 + 1)(α2n−1 − 1)

(2n− 1) · α4m(2n−1)

in terms of Lucas numbers.

B-1292 Proposed by D. M. Bătineţu-Giurgiu, “Matei Basarab” National Col-
lege, Bucharest, Romania and Neculai Stanciu, “George Emil Palade”
School, Bazău, Romania.

For x, y, z > 0, prove that

x2

(5F 2
2ny + 2z)(5F 2

2nz + 2y)
+

y2

(5F 2
2nz + 2x)(5F 2

2nx+ 2z)
+

z2

(5F 2
2nx+ 2y)(5F 2

2ny + 2x)
≥ 3

L2
4n

.
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B-1293 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National Uni-
versity, Ivano-Frankivsk, Ukraine.

For all positive integers n prove that

(A)

√
F 3
1 +

√
F 3
2 + · · ·+

√
F 3
n < 2;

(B)

√
L3
1 +

√
L3
2 + · · ·+

√
L3
n < 3.

B-1294 Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria,
Gran Canaria, Spain and José Luis Dı́az-Barrero, Barcelona Tech,
Barcelona, Spain.

Let A(x) and B(x) be polynomials of degree n such that A(i) = Fi and B(i) = Li, respec-
tively, for every i with 0 ≤ i ≤ n. Find the values of A(n+ 1) and B(n+ 1).

B-1295 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Given an even integer r, prove that
∞∑
n=0

Lrn

2n+ 1

(
4

Lr

)n(2n
n

)−1

=
Lrπ

2
.

SOLUTIONS

The Fifth Oldie from the Vault

B-415 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose,
CA.
(Vol. 17.4, December 1979)

The circumference of a circle in a fixed plane is partitioned into n arcs of equal length. In
how many ways can one color these arcs if each arc must be red, white, or blue? Colorings
which can be rotated into one another should be considered to be the same.

Editor’s Note: This is another old problem from 40 years ago. No solutions have appeared,
so we feature the problem again, and invite the readers to solve it.

Solution by Albert Stadler, Herrliberg, Switzerland.

The number of rotationally distinct colorings of n arcs of a circle is calculated by means of
Burnside’s lemma, which states:

Let G be a finite group that acts on a set X. For each g ∈ G, let Xg denote
the set of elements in X that are fixed by g (or left invariant by g); in other
words, Xg = {x ∈ X | gx = x}. Then the number of orbits is

1

|G|
∑
g∈G

∣∣Xg
∣∣.
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In this problem, X is the set of colored circles, which is a set of size 3n, and G is the cyclic
rotation group of order n. Let a be a generator of G, for instance, the rotation by one arc
in the positive direction. Thus, G = {a, a2, . . . , an}, where an is the identity element of the
group. For each k ∈ {1, 2, . . . , n}, the rotation ak is of order n/ gcd(k, n). It partitions the
set of n arcs into gcd(k, n) orbits, each of size n/ gcd(k, n). A coloring is invariant under ak

if and only if it is constant on each orbit. Thus, with three colors, the number of invariant
colorings for ak is 3gcd(k,n). According to Burnside’s lemma, the number Sn of rotationally
distinct colorings is obtained by averaging the number of invariant colorings over all elements
of the group. Therefore,

Sn =
1

n

n∑
k=1

3gcd(k,n) =
1

n

∑
d|n

3
n
d

∑
1≤k≤n

gcd(k,n)=n
d

1 =
1

n

∑
d|n

ϕ(d) · 3
n
d ,

where ϕ is Euler’s totient function.

Editor’s Note: It is obvious that the result can be generalized to colorings with m colors.

Also solved by Michel Bataille, Luke Paulso (student), Raphael Schumacher (grad-
uate student), J. N. Senadheera, Paul K. Stockmeyer, David Terr, and the pro-
poser.

Three Atypical Solutions

B-1271 Proposed by Ivan V. Fedak, Precarpathian National University, Ivano-
Frankivsk, Ukraine.

For all positive integers n, prove that

αn − βn

αn+3 − βn+3
+

αn+1 − βn+1

(α− β)(αn+1 + βn+1)
>

1

2
.

Solution 1 by Won Kyun Jeong, Kyungpook National University, Daegu, Korea.

Because of Binet’s formulas, we find

αn − βn

αn+3 − βn+3
+

αn+1 − βn+1

(α− β)(αn+1 + βn+1)
=

Fn

Fn+3
+

Fn+1

Ln+1
.

It is easy to verify the inequality when n = 1. For n > 1, it follows from Lm = Fm+2 − Fm−2

that
Fn

Fn+3
+

Fn+1

Ln+1
=

Fn

Fn+3
+

Fn+1

Fn+3 − Fn−1
>

Fn

Fn+3
+

Fn+1

Fn+3
=

Fn+2

Fn+3
>

1

2
.

Solution 2 by Hideyuki Ohtsuka, Saitama, Japan.

Because we cannot have Fn = Fn+1 = Fn+2 for n ≥ 1, it follows from Nesbitt’s inequality
that

αn − βn

αn+3 − βn+3
+

αn+1 − βn+1

(α− β)(αn+1 + βn+1)
+ 1

=
Fn

Fn+3
+

Fn+1

Ln+1
+

Fn+2

Fn+2
=

Fn

Fn+1 + Fn+2
+

Fn+1

Fn+2 + Fn
+

Fn+2

Fn + Fn+1
>

3

2
.
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Solution 3 by Raphael Schumacher (graduate student), ETH Zurich, Switzerland.

The inequality is seen to be equivalent to Fn
Fn+3

+ Fn+1

Ln+1
> 1

2 . We will prove that, for n ≥ 1,

the stronger inequality
Fn

Fn+3
+

Fn+1

Ln+1
≥ 2

3

holds. It suffices to prove that

FnLn+1 + Fn+1Fn+3 −
2

3
Fn+3Ln+1 ≥ 0.

By employing the two identities Ln+1 = 2Fn + Fn+1 and Fn+3 = Fn + 2Fn+1, we find

FnLn+1 + Fn+1Fn+3 −
2

3
Fn+3Ln+1

= Fn(2Fn + Fn+1) + Fn+1(Fn + 2Fn+1)−
2

3
(Fn + 2Fn+1)(2Fn + Fn+1)

=
2

3
(F 2

n + F 2
n+1)−

4

3
FnFn+1.

To complete the proof, apply the AM-GM inequality to obtain

2

3
(F 2

n + F 2
n+1)−

4

3
FnFn+1 ≥

2

3
· 2FnFn+1 −

4

3
FnFn+1 = 0.

Also solved by Thomas Achammer, Michel Bataille, Brian D. Beasley, Brian
Bradie, Kenny B. Davenport (two solutions), Steve Edwards, Fort Hays State
University Problem Solving Group, Dmitry Fleischman, Robert Frontczak, G. C.
Greubel, Russell Jay Hendel, Wei-Kai Lai, Luke Paluso (student), Ángel Plaza,
Albert Stadler, and the proposer.

A Binomial Sum of Cosine and Sine Functions

B-1272 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

For any integer n ≥ 0, prove that

(i)

n∑
k=0

βk

(
n

k

)
cos

kπ

5
= (−β)n cos nπ

5
,

(ii)

n∑
k=0

βk

(
n

k

)
sin

kπ

5
= −(−β)n sin nπ

5
.

Solution by Michel Bataille, Rouen, France.

For 0 ≤ k ≤ n, we have αnβk = αn−k(αβ)k = (−1)kαn−k. Multiplication by αn to both
sides of (i) and (ii) reveals that they are equivalent to

n∑
k=0

(
n

k

)
αn−k(−1)k cos kπ

5
= cos

nπ

5
,

and
n∑

k=0

(
n

k

)
αn−k(−1)k sin kπ

5
= − sin

nπ

5
,
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respectively. We can prove both statements by showing that

n∑
k=0

(
n

k

)
αn−k(−1)keikπ/5 = e−inπ/5.

Now, using first the binomial theorem and then α = 2 cos π
5 , we obtain

n∑
k=0

(
n

k

)
αn−k(−1)keikπ/5 = (α− eiπ/5)n

=
(
cos

π

5
− i sin

π

5

)n
= (e−iπ/5)n

= e−inπ/5.

The desired result follows.

Also solved by Khristo N. Boyadzhiev, Brian Bradie, Kenny B. Davenport, Steve
Edwards, Dmitry Fleischman, Robert Frontczak, G. C. Greubel, Luke Paluso
(student), Ángel Plaza, Raphael Schumacher (graduate student), Jason L. Smith,
Albert Stadler, David Terr, Dan Weiner, and the proposer.

A Summation Formula for an Arithmetic Progression

B-1273 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.

Let {un}n≥0 be a generalized Fibonacci sequence defined by un = un−1 + un−2 with u0
and u1 not both being zero. Let further {an}n≥1 be an arithmetic progression, that is, an =
a1 + (n− 1)d, where a1, d > 0. Show that

n∑
k=1

uk+2

ak+1
√
ak + ak

√
ak+1

=
1

d

(
u3√
a1

− un+2√
an+1

+
n−1∑
k=1

uk+1√
ak+1

)
.

Solution by Albert Stadler, Herrliberg, Switzerland.

We have

n∑
k=1

uk+2

ak+1
√
ak + ak

√
ak+1

=
n∑

k=1

uk+2

ak+1
√
ak + ak

√
ak+1

·
ak+1

√
ak − ak

√
ak+1

ak+1
√
ak − ak

√
ak+1

=

n∑
k=1

uk+2(ak+1
√
ak − ak

√
ak+1 )

akak+1(ak+1 − ak)

=
1

d

n∑
k=1

uk+2√
ak

− 1

d

n∑
k=1

uk+2√
ak+1
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=
1

d

n−1∑
k=0

uk+3√
ak+1

− 1

d

n∑
k=1

uk+2√
ak+1

=
u3

d
√
a1

− un+2

d
√
an+1

+
1

d

n−1∑
k=1

uk+3 − uk+2√
ak+1

=
u3

d
√
a1

− un+2

d
√
an+1

+
1

d

n−1∑
k=1

uk+1√
ak+1

.

Also solved by Michel Bataille, Brian Bradie, Matthew Daugomah (student),
Steve Edwards, I. V. Fedak, Dmitry Fleischman, Hideyuki Ohtsuka, Luke Paluso
(student), Ángel Plaza, Ben Race (student), Raphael Schumacher (graduate stu-
dent), Daniel Văcaru, and the proposer.

Apply the Triangle Inequality

B-1274 Proposed by Ivan V. Fedak, Precarpathian National University, Ivano-
Frankivsk, Ukraine.

For all positive integers n, prove that
n∑

k=1

√
F2k−1 ≥

√
F2n+3 − 2Fn+3 + 2.

Solution by Wei-Kai Lai, University of South Carolina Salkehatchie, Walterboro,
SC.

Consider vectors v⃗i = (Fi, Fi−1) for i ≥ 1. Then
∥∥v⃗i∥ =

√
F 2
i + F 2

i−1 =
√
F2i−1, according

to Identity 30 [1, p. 97]. Applying the same identity, we also notice that√
F2n+3 − 2Fn+3 + 2 =

√
F 2
n+2 + F 2

n+1 − 2(Fn+2 + Fn+1) + 2

=
√

(Fn+2 − 1)2 + (Fn+1 − 1)2

=
√

(F1 + F2 + · · ·+ Fn)2 + (F0 + F1 + · · ·+ Fn−1)2,

because of Theorem 5.2 [1, p. 69]. Therefore, the proposed inequality is equivalent to

n∑
k=1

∥v⃗k∥ ≥

∥∥∥∥∥
n∑

k=1

v⃗k

∥∥∥∥∥ ,
which is true according to the generalized triangle inequality. The equality occurs when n = 1.

Reference

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.

Also solved by Thomas Achammer, Michel Bataille, Kenny B. Davenport, Steve
Edwards, Dmitry Fleischman, Hiduyuki Ohtsuka, Luke Paluso (student), Ángel
Plaza, Raphael Schumacher (graduate student), Albert Stadler, and the proposer.
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An Unusual Sum of Products

B-1275 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Given a real number c > 0, for any integer n ≥ 0, find a closed form expression for the sum
n∑

k=0

n∏
j=k

1

c(L2j+1 + 1) + L2j − 1
.

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.

Let f(n) denote the sum in the problem statement. It is not difficult to see that

f(n+ 1) =
1

c(L2n+2 + 1) + L2n+1 − 1

(
1 + f(n)

)
.

We will now show, by induction, that

f(n) =
1

c(L2n+1 + 1)
.

The identity clearly holds when n = 0. Assume it holds for some nonnegative integer n. It
follows that

f(n+ 1) =
1

c(L2n+2 + 1) + L2n+1 − 1

(
1 +

1

c(L2n+1 + 1)

)
=

c(L2n+1 + 1) + 1

c2(L2n+2 + 1)(L2n+1 + 1) + c(L2
2n+1 − 1)

.

Using
L2
m = α2m + 2αmβm + β2m = L2m + 2(−1)m,

we find
L2
2n+1 − 1 = L2n+2 + 2(−1)2n+1 − 1 = L2n+2 + 1.

Therefore,

f(n+ 1) =
c(L2n+1 + 1) + 1

c2(L2n+2 + 1)(L2n+1 + 1) + c(L2n+2 + 1)
=

1

c(L2n+2 + 1)
.

This completes the induction and establishes the closed form expression for f(n).

Also solved by Michel Bataille, Steve Edwards, I. V. Fedak, G. C. Greubel, Luke
Paluso (student), Raphael Schumacher (graduate student), Albert Stadler, and
the proposer.

Belated Acknowledgment: Illia Antypenko, a high school student, also solved problems
B-1267 and B-1269.
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