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Each problem and solution should be typed on separate sheets. Solutions to problems in this
issue must be received by November 15, 2012. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results”.

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1106 Proposed by Hideyuki Ohtsuka, Saitama, Japan

Prove that
3n
∑

k=1

F2Fk
≡ 0 (mod 5).
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B-1107 Proposed by Hideyuki Ohtsuka, Saitama, Japan

Determine
∑

j≥1,k≥3

1

F 4j−2
k

.

B-1108 Proposed by D. M. Bătineţu–Giurgiu, Matei Basarab National College,
Bucharest and Neculai Stanciu, George Emil Palade Secondary School,
Buzău, Romania

Let Tk = k(k+1)
2 for all k ≥ 1. Prove that

n
∑

k=1

F 2m+2
k

Tm
k

≥ 3m(FnFn+1)
m+1

nmTm
n+1

for any positive integer n ≥ 1 and for any positive real number m.

B-1109 Proposed by D. M. Bătineţu–Giurgiu, Matei Basarab National College,
Bucharest and Neculai Stanciu, George Emil Palade Secondary School,
Buzău, Romania

Prove that

2(F 4
n + F 4

n+1 + F 4
n+2) > 9(FnFn+1Fn+2)

4
3 ; (1)

(F 2
n + F 2

n+1 + F 2
n+2)

2 >
√
6(FnFn+1Fn+2)

2
3 ; (2)

(F 2
n + F 2

n+1 + F 2
n+2)

2

(

1

F 4
n

+
1

F 4
n+1

+
1

F 4
n+2

)

> 18; (3)

2(F 4
n + F 4

n+1 + F 4
n+2)

(

1

F 2
n

+
1

F 2
n+1

+
1

F 2
n+2

)2

> 81. (4)

B-1110 Proposed by Sergio Falcón and Ángel Plaza, Universidad de Las Palmas
de Gran Canaria, Spain

For any positive integer k, the k-Fibonacci and k-Lucas sequences, {Fk,n}n∈N and {Lk,n}n∈N,
both are defined recursively by un+1 = kun+un−1 for n ≥ 1, with respective initial conditions
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Fk,0 = 0; Fk,1 = 1 and Lk,0 = 2; Lk,1 = k. Prove that

∑

i≥0

(

2n

i

)

F 2
k,i = (k2 + 4)n−1Lk,2n (1)

∑

i≥0

(

2n+ 1

i

)

F 2
k,i−1 = (k2 + 4)nFk,2n+1 (2)

∑

i≥0

(

2n

i

)

L2
k,i = (k2 + 4)nLk,2n (3)

∑

i≥0

(

2n+ 1

i

)

L2
k,i = (k2 + 4)n+1Fk,2n+1. (4)

SOLUTIONS

It Is Two!

B-1086 Proposed by José Luis D́ıaz-Barrero, Polytechnical University of Cat-
alonia, Barcelona, Spain
(Vol. 49.2, May 2011)

Let n be a positive integer. Prove that

F2n+1 + FnFn+1 + 1

Fn+2 +
∑

1≤i<j≤n

FiFj

is an integer and determine its value.

Solution by Zbigniew Jakubczyk, Warsaw, Poland.

Using the well-known identities
n
∑

k=1

Fk = Fn+2 − 1,

n
∑

k=1

F 2
k = FnFn+1, F2n+1 = F 2

n + F 2
n+1, and Fn+2 = Fn+1 + Fn,

we obtain

(Fn+2 − 1)2 =

(

n
∑

k=1

Fk

)2

=
n
∑

k=1

F 2
k + 2

∑

1≤i<j≤n

FiFj = FnFn+1 + 2
∑

1≤i<j≤n

FiFj .

Thus,

F2n+1 + FnFn+1 + 1

Fn+2 +
∑

1≤i<j≤n FiFj

=
F 2
n + F 2

n+1 + FnFn+1 + 1

Fn+2 +
(Fn+2−1)2−FnFn+1

2

=
2(F 2

n + F 2
n+1 + FnFn+1 + 1)

F 2
n+2 + 1− FnFn+1

=
2(F 2

n + F 2
n+1 + FnFn+1 + 1)

F 2
n+1 + F 2

n + FnFn+1 + 1
= 2.
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Also solved by Paul S. Bruckman, Brian D. Beasley, M. N. Deshpande, Steve
Edwards, Russell J. Hendel, Robinson Higuita, Harris Kwong, Carl Libis, Ángel
Plaza, Jaroslav Seibert, James Sellers, and the proposer.

It Is Two, Too!

B-1087 Proposed by Br. J. Mahon, Kensington, Australia
(Vol. 49.2, May 2011)

Evaluate
∞
∏

i=3

F 2
2i−1 + F2i−1 − 2

F 2
2i−1 − F2i−1 − 2

.

Solution by Paul S. Bruckman, Nanaimo, BC, Canada

We begin with the known relation:

F2n+2F2n − F 2
2n+1 = −1.

Then

(F2n+2 − 1)(F2n + 1)

(F2n − 1)(F2n+2 + 1)
=

F 2
2n+1 − 1 + F2n+2 − F2n − 1

F 2
2n+1 − 1− F2n+2 + F2n − 1

=
F 2
2n+1 + F2n+1 − 2

F 2
2n+1 − F2n+1 − 2

. (1)

We now form the product of the expressions in (1), from n = 2 to n = N − 1, letting such
product be denoted as PN (supposing N ≥ 3). Therefore, let

PN =
N−1
∏

n=2

(F2n+2 − 1)(F2n + 1)

(F2n − 1)(F2n+2 + 1)
=

N−1
∏

n=2

{

F 2
2n+1 + F2n+1 − 2

F 2
2n+1 − F2n+1 − 2

}

=
N
∏

j=3

{

F 2
2j−1 + F2j−1 − 2

F 2
2j−1 − F2j−1 − 2

}

.

(2)
The first expression in (2) is a telescoping product; we easily see that

PN =
(F2N − 1)(F4 + 1)

(F4 − 1)(F2N + 1)
=

2(F2N − 1)

F2N + 1
.

Then we see that limN→∞(PN ) = 2. It follows that

∞
∏

j=3

{

F 2
2j−1 + F2j−1 − 2

F 2
2j−1 − F2j−1 − 2

}

= 2.

Also solved by Kenneth B. Davenport, M. D. Deshpande, Robinson Higuita, and
the proposer.

A “Well-Connected” Sequence

B-1088 Proposed by José Luis D́ıaz-Barrero, Polytechnical University of Cat-
alonia, Barcelona, Spain
(Vol. 49.2, May 2011)
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Let {an}n≥1 be a sequence of real numbers defined by a1 = 3, a2 = 5 and for all n ≥ 3,
an+1 =

1
2(a

2
n + 1). Prove that

1 +

(

n
∑

k=1

Lk√
1 + ak

)2

<
LnLn+1

2
.

Solution by Ángel Plaza and Sergio Falcón (jointly), Department of Mathematics,
Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain

Since
∑n

k=1 L
2
k = LnLn+1 − 2, the proposed inequality is equivalent to

1 +

(

n
∑

k=1

Lk√
1 + ak

)2

< 1 +
1

2

n
∑

k=1

L2
k

(

n
∑

k=1

Lk√
1 + ak

)2

<

n
∑

k=1

L2
k

2
.

By the Cauchy-Schwarz inequality,
(

n
∑

k=1

Lk√
1 + ak

)2

≤
(

n
∑

k=1

L2
k

)(

n
∑

k=1

1

1 + ak

)

.

It is easy to check that the sequence {an}n≥1 is related to the Silvester’s sequence {bn}n≥1

which is defined by bn+1 = b2n − bn + 1, b1 = 2, by the following relation,

an = 2bn − 1.

Since
∑∞

k=1
1
bk

= 1 (see [1]), the result
∑n

k=1
1

1+ak
< 1

2 follows and the problem is done.

References

[1] A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, The Fibonacci Quarterly, 11.5 (1973),
429–437.

A similar proof was provided by K. B. Davenport who pointed out the connection between
the sequence {ak}k≥1 and the “Greedy Odd” Egyptian fraction attributed to Erdös and Straus.

Also solved by Paul S. Bruckman, Kenneth B. Davenport, Robinson Higuita,
Zbigniew Jakubczyk, Jaroslav Seibert, and the proposer.

A “Loaded Divisibility” Problem

B-1089 Proposed by Mohammad K. Azarian, University of Evansville, Indiana
(Vol. 49.2, May 2011)

Let the sequence a1, a2, a3, . . . , an, . . . be defined by the recurrence relation

an+2

an
= an+1, n ≥ 0, a0 = 1, a1 = 2.
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Also, let p1, p2, p3, . . . , pn, represent a permutation of a1, a2, a3, . . . , an. Show that

n!
∏

j=1

(

n
∑

i=1

|ai − pi|
)

aj

is divisible by 2n!+Fn!+2−1 for n ≥ 0.

Solution by Harris Kwong, SUNY Fredonia, Fredonia, NY

Notice that
n!
∏

j=1

(

n
∑

i=1

|ai − pi|
)

aj =

(

n
∑

i=1

|ai − pi|
)n!

·
n!
∏

j=1

aj.

It is easy to verify that ai = 2Fi . Hence,
∑n

i=1 |ai − pi| is divisible by 2, and

n!
∏

j=1

aj = 2
∑n!

j=1 Fj = 2Fn!+2−1,

from which the desired result follows immediately.

Also solved by Robinson Higuita and Oscar Garcia (jointly), and the proposer.

A “Sterling” Sum

B-1090 Proposed by N. Gauthier, Kingston, ON, Canada
(Vol. 49.2, May 2011)

a) Let x be an arbitrary variable and k, m, n, r nonnegative integers, with 0 ≤ k ≤ n and

0 ≤ r ≤ m. Also let {S(m)
r : 0 ≤ r ≤ m} be the set of Stirling numbers of the second

kind, which satisfy the following recurrence, with initial value S
(0)
0 = 1 and boundary

conditions S
(m)
−1 = 0 and S

(m)
m+1 = 0:

S(m+1)
r = rS(m)

r + S
(m)
r−1.

Finally, let (n)r = n(n − 1) · · · (n − r + 1) for r 6= 0, with (n)0 = 1, and adopt the
convention that k0 = 1 for all values of k, including zero. Prove that:

n
∑

k=0

km
(

n

k

)

xk =

m
∑

r=0

(n)rS
(m)
r xr(1 + x)n−r.

b) Use a) to show that

n
∑

k=0

k4
(

n

k

)

Fk = a(n)F2n−3 + b(n)F2n−4

and determine the polynomial coefficients, a(n) and b(n).
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Solution by Harris Kwong, SUNY Fredonia, NY

a) Induct on m. The identity holds when m = 0 because it reduces to the binomial theorem.
Assume it holds for some integer m ≥ 0, then

m
∑

k=0

km+1

(

n

k

)

xk = x
d

dx

[

m
∑

k=0

km
(

n

k

)

xk

]

= x
d

dx

[

m
∑

r=0

(n)rS
(m)
r xr(1 + r)n−r

]

=
n
∑

r=1

(n)rS
(m)
r · rxr(1 + x)n−r +

n−1
∑

r=0

(n)rS
(m)
r · (n− r)xr+1(1 + x)n−r−1

=
n
∑

r=1

(n)rrS
(m)
r xr(1 + x)n−r +

n−1
∑

r=0

(n)r+1S
(m)
r xr+1(1 + x)n−(r+1)

=

n
∑

r=1

(n)rrS
(m)
r xr(1 + x)n−r +

n
∑

r=1

(n)rS
(m)
r−1x

r(1 + x)n−r

=

n
∑

r=1

(n)rS
(m+1)
r xr(1 + x)n−r,

which completes the induction because S
(m)
0 = 0 for all m > 0.

b) When x equals either α or β, we have 1+x = x2, hence, xr(1+x)n−r = x2n−r. Therefore,
Binet’s formula leads to

n
∑

k=0

km
(

n

k

)

Fk =
m
∑

r=0

(n)rS
(m)
r F2n−r.

In particular, since S
(4)
0 = 0, S

(4)
1 = S

(4)
4 = 1, S

(4)
2 = 7, and S

(4)
3 = 6, we find

n
∑

k=0

k4
(

n

k

)

Fk = (n)1F2n−1 + 7(n)2F2n−2 + 6(n)3F2n−3 + (n)4F2n−4

= (n)1(2F2n−3 + F2n−4) + 7(n)2(F2n−3 + F2n−4) + 6(n)3F2n−3 + (n)4F2n−4

= (6n3 − 11n2 + 7n)F2n−3 + (n4 − 6n3 + 18n2 − 12n)F2n−4.

E. H. M. Brietzke provided two proofs; one similar to the featured solution and another one
combinatorial in nature.

Also solved by Paul S. Bruckman, Eduardo H. M. Brietzke, Kenneth B. Daven-
port, Robinson Higuito, and the proposer.
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