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include references rather than quoting “well-known results.”
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BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1246 Proposed by Raphael Schumacher (student), ETH Zurich, Switzerland.

Prove that, for all integers n ≥ 0,

Fn−1√
n+ 2 +

√
n+ 1

+

n
∑

k=0

Fk√
k + 1 +

√
k
= 2

n
∑

k=1

Fk−1√
k + 2 +

√
k
+

√
2− 1,

and deduce that

Fn+1√
n+ 2 +

√
n+ 1

=

n
∑

k=0

(

2√
k + 3 +

√
k + 1

− 1√
k + 1 +

√
k

)

Fk−
Fn√

n+ 3 +
√
n+ 2

+
√
2−1.

B-1247 Proposed by Kenny B. Davenport, Dallas, PA.

Prove that, for all positive integers n,

n
∑

k=1

L3
kL

3
k+1 =

(

n
∑

k=1

L2
kLk+1

)2

+ 6

n
∑

k=1

L2
kLk+1.
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B-1248 Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria,
Spain.

For all positive integers n and a, prove that
n
∑

k=0

Lk(L
a
k+1 + La

k+2) ≤ (Ln+2 − 1)(La
n+2 + 1).

B-1249 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

For positive integers s and t, prove that
∞
∑

n=s

(−1)tn

α(2t−1)nFn

=

∞
∑

n=t

(−1)sn

α(2s−1)nFn

.

B-1250 Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria,
Spain.

Evaluate
∞
∑

k=1

tan−1 Fk+1

FkFk+2 + 1
tan−1 1

Fk+1
.

Catalan Identity for the k-Fibonacci Numbers

B-1226 Proposed by Ángel Plaza and Sergio Falcón, Universidad de Las Palmas
de Gran Canaria, Spain.
(Vol. 56.2, May 2018)

For any positive integer k, the k-Fibonacci and k-Lucas sequences, denoted {Fk.n}n≥0 and
{Lk,n}n≥0 respectively, are both defined recursively by un+1 = kun + un−1 for n ≥ 1, with
initial conditions Fk,0 = 0, Fk,1 = 1, and Lk,0 = 2, Lk,1 = k. Prove that, for any positive
integer n,

n
∑

j=1

F 2
k,jFk,2j =

F 2
k,nF

2
k,n+1

k
.

Solution by Jason L. Smith, Richland Community College, Decatur, IL.

For brevity, let un = Fk,n and vn = Lk,n. Use the Binet forms un = pn−qn

p−q
and vn = pn+qn,

where p = k+
√
k2+4
2 and q = k−

√
k2+4
2 . Observe that p+ q = k, pq = −1, and p− q =

√
k2 + 4.

It is not difficult to see that u2n = unvn from these relations. It can also be shown that
p2 + 1 =

√
k2 + 4 · p, and q2 + 1 = −

√
k2 + 4 · q. From these, we find that un + un+2 = vn+1.

Now, we can prove our sum using induction. First observe that
∑1

j=1 u
2
ju2j = u21u2 = k,

and
u2
1u

2
2

k
= k. Assume the identity holds for some integer n ≥ 1. Next, consider the sum with

upper limit n+ 1:

n+1
∑

j=1

u2ju2j =
u2nu

2
n+1

k
+ u2n+1u2n+2 =

u2n+1

k

(

u2n + kun+1vn+1

)

.
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Next, square both sides of the recursion un+2 = kun+1 + un to obtain

u2n+2 = u2n + kun+1

(

kun+1 + 2un
)

= u2n + kun+1

(

un+2 + un
)

= u2n + kun+1vn+1.

This implies
∑n+1

j=1 u
2
ju2j =

u2
n+1u

2
n+2

k
, which proves the result.

Editor’s Note: Fedak’s solution is essentially the same as the one presented above, except that
he used the identities kun+1 = un+2 − un and vn+1 = un+2 + un to conclude that

kun+1vn+1 = (un+2 − un)(un+2 + un) = u2n+2 − u2n.

Several solvers remarked that this identity is a special case of the Catalan’s Identity for the
k-Fibonacci numbers, see [1, Proposition 7] or [2, Proposition 3].

References

[1] S. Falcón and Á. Plaza, On the Fibonacci k-numbers, Chaos, Solitons & Fractals, 32 (2007), 1615–1624.

[2] S. Falcón and Á. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solitons & Fractals, 33
(2007), 38–49.

Also solved by Alexandru Atim, Brian D. Beasley, Kenny B. Davenport, Ivan
V. Fedak, Dmitry Fleischman, Robert Frontczak, Wei-Kai Lai, Santiago Alzate
Suárez and Kevin Daŕıo López Rodŕıguez (students) (jointly), David Terr, and
the proposer.

Generating Function of the Catalan Numbers

B-1227 Proposed by Kenny B. Davenport, Dallas, PA.
(Vol. 56.2, May 2018)

Let Cn = 1
n+1

(2n
n

)

denote the nth Catalan number. Find the closed form expressions for
the sums

∞
∑

n=0

CnFn

8n
, and

∞
∑

n=0

CnLn

8n
.

Solution by Lauren G. Mcanany (student), California University of Pennsylvania,
California, PA.

We will find a closed expression for a more general sum; that is, we will prove that

∞
∑

n=0

CnGn

8n
= 4

(

2a− b+
4b− 7a√

10

)

, (1)

where {Gn}n≥0 is the generalized Fibonacci sequence with G1 = a, G2 = b, and Gn =
Gn−1 +Gn−2, for n ≥ 3,, and a, b ∈ Z.

The generating function of the Catalan numbers is known to be

C(x) =
∞
∑

n=0

Cnx
n =

1−
√
1− 4x

2x
, for |x| < 1

4
; (2)
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see [1, p. 345]. We also use the identity [2, p. 111]

Gn =
cαn − dβn

√
5

, for all n ∈ Z,

where c = a+ (a− b)β and d = a+ (a− b)α, to obtain
∞
∑

n=0

CnGn

8n
=

c C
(

α
8

)

− d C
(

β
8

)

√
5

.

Since α
8 ,

β
8 ∈

(

− 1
4 ,

1
4

)

, we can apply (2) to evaluate the infinite sum:

∞
∑

n=0

CnGn

8n
=

4c√
5α

(

1−
√

2− α

2

)

− 4d√
5 β

(

1−
√

2− β

2

)

.

Since 2 − β = α2, we find
√
2− β = α. Similarly, 2 − α = β2 yields

√
2− α = −β (because

β < 0). Hence,
∞
∑

n=0

CnGn

8n
=

4√
5

[(

c

α
− d

β

)

+
1√
2

(

cβ

α
+

dα

β

)]

=
4√
5

[√
5 (2a− b) +

1√
2
(4b− 7a)

]

= 4

(

2a− b+
4b− 7a√

10

)

.

This proves (1). If we take a = b = 1 in (1), then we can see that
∞
∑

n=0

CnFn

8n
= 4

(

1− 3√
10

)

= 4− 6

5

√
10.

If we now take a = 1 and b = 3 in (1), then
∞
∑

n=0

CnLn

8n
= 4

(

−1 +
5√
10

)

= −4 + 2
√
10.

References

[1] T. Koshy, Catalan Numbers with Applications, Oxford University Press, Oxford, 2009.
[2] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley, New York, 2001.

Also solved by Eric Blom, Khristo N. Boyadzhiev, Ivan V. Fedak, Dmitry Fleis-
chman, Robert Frontczak, Ángel Plaza, Raphael Schumacher (student), Jason L.
Smith, Albert Stadler, Santiago Alzate Suárez (student), David Terr, Dan Weiner,
and the proposer.

A Double Sum of Triple Products

B-1228 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 56.2, May 2018)

For any integer n ≥ 0, find the closed form expressions for the sums

(i) Sn =
n
∑

i=0

n
∑

j=0

L3iL3jL2(3i−3j);
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(ii) Tn =
n
∑

i=0

n
∑

j=0

F2·5iF2·5jL3(5i−5j).

Solution by Ehren Metcalfe, Barrie, Ontario, Canada.

(i) Expand the body of Sn using the product formula LaLb = (−1)bLa−b + La+b [1, Iden-
tity 17a] to show that the inner sum telescopes:

Sn =
n
∑

i=0

n
∑

j=0

L3iL3jL2(3i−3j)

=

n
∑

i=0

n
∑

j=0

(

L3j+1−2·3i + L2·3i−3j
)

L3i

=

n
∑

i=0

n
∑

j=0

(

L3j+1−3i − L3j−3i − L3i+1−3j+1 + L3i+1−3j
)

=
n
∑

i=0

(

L3n+1−3i − L1−3i − L3i+1−3n+1 + L3i+1−1

)

.

It follows from L−a = (−1)aLa that Lp−q = Lq−p for odd integers p and q. We use this to
make substitutions in Sn to see that the remaining sum telescopes:

Sn =

n
∑

i=0

(

L3n+1−3i − L3n+1−3i+1 + L3i+1−1 − L3i−1

)

= 2L3n+1−1 − 4.

(ii) Expand Tn by applying the product formula FaFb =
1
5 (La+b−(−1)bLa−b) [1, Identity 17b],

followed by two applications of Identity 17a, to show that the inner sum telescopes:

Tn =

n
∑

i=0

n
∑

j=0

F2·5iF2·5jL3(5i−5j)

=
1

5

n
∑

i=0

n
∑

j=0

(

L2(5i+5j) − L2(5i−5j)

)

L3(5i−5j)

=
1

5

n
∑

i=0

n
∑

j=0

(L5j+1−5i − L5j−5i − L5i+1−5j+1 + L5i+1−5j )

=
1

5

n
∑

i=0

(L5n+1−5i − L1−5i − L5i+1−5n+1 + L5i+1−1) .

Therefore,

Tn =
1

5

n
∑

i=0

(L5n+1−5i − L5n+1−5i+1 + L5i+1−1 − L5i−1) =
1

5

(

2L5n+1−1 − 4
)

.

References

[1] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover, 2008.

180 VOLUME 57, NUMBER 2



ELEMENTARY PROBLEMS AND SOLUTIONS

Editor’s Note: Davenport used the identities

LxLyLz = Lx+y+z + (−1)xL−x+y+z + (−1)yLx−y+z + (−1)zLx+y−z,

FxFyLz = Lx+y+z − (−1)xL−x+y+z − (−1)yLx−y+z + (−1)zLx+y−z,

to derive the same telescopic sums. He refers the interested readers to the solution to Elemen-
tary Problem B-1203 that appeared in Volume 56.1 (2018), pages 85–86.

Also solved by Kenny B. Davenport, Ivan V. Fedak, and the proposer.

Stirling Approximation of Double Factorial

B-1229 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade School,
Bazău, Romania.
(Vol. 56.2, May 2018)

Let m, p ≥ 0. Evaluate

lim
n→∞





n+1

√

(

(2n+ 1)!!
)m+1

F
p(m+1)
n+1

(n+ 1)m
−

n

√

(

(2n − 1)!!
)m+1

F
p(m+1)
n

nm



 ,

and

lim
n→∞





n+1

√

(

(2n + 1)!!
)m+1

L
p(m+1)
n+1

(n+ 1)m
−

n

√

(

(2n − 1)!!
)m+1

L
p(m+1)
n

nm



 .

Solution by David Terr, Oceanside, CA.

We define functions F(n;m, p) and L(n;m, p) as

F(n;m, p) =

n

√

(

(2n− 1)!!
)m+1

F
p(m+1)
n

nm
,

L(n;m, p) =

n

√

(

(2n− 1)!!
)m+1

L
p(m+1)
n

nm
.

Then, it suffices to evaluate the limits

f(m, p) = lim
n→∞

[F(n+ 1;m, p) −F(n;m, p)],

l(m, p) = lim
n→∞

[L(n+ 1;m, p)− L(n;m, p)].

We claim the following

f(m, p) = l(m, p) =

(

2αp

e

)m+1

. (3)

Using the Stirling approximation for the factorial as well as the definition of the double facto-
rial, we have the following:

(2n − 1)!! =
(2n)!

2n n!
=

√
4πn

(

2n
e

)2n(
1 +O(n−1)

)

2n
√
2πn

(

n
e

)n(
1 +O(n−1)

) =
√
2

(

2n

e

)n
(

1 +O(n−1)
)

.
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Together with the Binet’s formula for Fn, we find

F(n;m, p) = n−m

(

2n

e

)m+1(αn − βn

√
5

)
p(m+1)

n
(

1 +O(n−1)
)

= n

(

2αp

e

)m+1
(

1 +O(n−1)
)

.

Similarly, we find

L(n;m, p) = n−m

(

2n

e

)m+1

(αn + βn)
p(m+1)

n
(

1 +O(n−1)
)

= n

(

2αp

e

)m+1
(

1 +O(n−1)
)

.

Thus, we obtain

f(m, p) = l(m, p) = lim
n→∞

(n+ 1− n)

(

2αp

e

)m+1
(

1 +O(n−1)
)

=

(

2αp

e

)m+1

,

proving (3).

Also solved by Kenny B. Davenport, Dmitry Fleischman, Kevin Daŕıo López
Rodŕıguez, Raphael Schumacher, and the proposer.

Another Hassenberg Matrix Problem

B-1230 Proposed by T. Goy, Vasyl Stefanyk Precarpathian National University,
Ivano-Frankivsk, Ukraine.

For all integers n ≥ 0, prove that

F2n+1 = (−1)n
∑

t1,t2,...,tn≥0
t1+2t2+···+ntn=n

(−1)t1+t3+···+tn−[1+(−1)n]/2
(t1 + t2 + · · ·+ tn)!

t1! t2! · · · tn!
· 2t1 .

Solution by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National University,
Ivano-Frankivsk, Ukraine.

We consider the Hassenberg matrix

Hn =



















a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0
a3 a2 a1 · · · 0 0
...

...
...

. . .
...

...
an−1 an−2 an−3 · · · a1 a0
an an−1 an−2 · · · a2 a1



















, a0 6= 0.

It is known that

det(Hn) =
∑

t1,t2,...,tn≥0
t1+2t2+···+ntn=n

(−a0)
n−(t1+t2+···+tn) (t1 + t2 + · · ·+ tn)!

t1! t2! · · · tn!
at11 a

t2
2 · · · atnn .

Let a0 = 1, a1 = 2,

a2 = a4 = · · · = a2k = −1, 2k ≤ n, and a3 = a5 = · · · = a2k+1 = 1, 2k + 1 ≤ n.
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Then, we obtain

Sn = (−1)n
∑

t1,t2,...,tn≥0
t1+2t2+···+ntn=n

(−1)t1+t3+···+tn−[1+(−1)n]/2
(t1 + t2 + · · · + tn)!

t1! t2! · · · tn!
· 2t1

= det



















2 1 0 · · · 0 0
−1 2 1 · · · 0 0
1 −1 2 · · · 0 0
...

...
...

. . .
...

...
(−1)n−2 (−1)n−3 (−1)n−4 · · · 2 1
(−1)n−1 (−1)n−2 (−1)n−3 · · · −1 2



















.

Adding row k − 1 to row k in this matrix for k = n to k = 2, we get that this determinant
equals

det



















2 1 0 · · · 0 0
1 3 1 · · · 0 0
0 1 3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 3 1
0 0 0 · · · 1 3



















= 2det(An−1)− det(An−2),

where

An =



















3 1 0 · · · 0 0
1 3 1 · · · 0 0
0 1 3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 3 1
0 0 0 · · · 1 3



















n×n

.

It is an easy exercise to find the recurrence relation det(An) = 3det(An−1)− det(An−2), from
which we determine that det(An) = F2n+2. Therefore,

Sn = 2F2n − F2n−2 = F2n+1.

Editor’s Note: Both Rodŕıguez and Stadler noticed that the generating function for F2n+1

is 1−x
1−3x+x2 , which is in the form of a composite function f(g(x)), where f(x) = 1

1+x
and

g(x) = x2−2x
1−x

. Consequently, they were able to derive the desired result by applying the Faá di

Bruno formula for the derivative of f(g(x)). See the solution to Elementary Problem B-1210
that appeared in Volume 56.2 (2018), pages 183–184.

Also solved by Kevin Daŕıo López Rodŕıguez, Albert Stadler, and the proposer.
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