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BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1146 Proposed by Titu Zvonaru, Comăneşti, Romania.

Prove that F 2
n+2 ≥ 5F 2

n−1 for all integers n ≥ 1.

B-1147 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Find a closed form expression for
∑

0≤a,b,c≤n
a+b+c=n

FaFbFc

a!b!c!
.
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B-1148 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that
∞
∑

k=1

F2k−1

L2k + 1
=

1√
5
.

B-1149 Proposed by Ángel Plaza and Sergio Falcón, Universidad de Las Palmas
de Gran Canaria, Spain.

For any positive integer number k, the k-Fibonacci and k-Lucas sequences, {Fk,n}n∈N and
{Lk,n}n∈N, both are defined recurrently by un+1 = kun+un−1 for n ≥ 1, with respective initial
conditions Fk,0 = 0; Fk,1 = 1 and Lk,0 = 2; Lk,1 = k. Prove that

n−1
∑

i=1

(Fk,i −
√

Fk,iFk,i+1 + Fk,i+1)
2 + (Fk,n −

√

Fk,nFk,1 + Fk,1)
2 ≥ Fk,nFk,n+1

k
, (1)

n−1
∑

i=1

(Lk,i −
√

Lk,iLk,i+1 + Lk,i+1)
2 + (Lk,n −

√

Lk,nLk,1 + Lk,1)
2 ≥ Lk,nLk,n+1

k
− 2, (2)

for any positive integer n.

B-1150 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Let n be a positive integer. For any positive integers r1, r2, . . . , rn, find the maximum value
of

Lr1+r2+···+rn

Fr1Fr2 · · ·Frn

as a function of n.

SOLUTIONS

Nth Root of a Product

B-1126 Proposed by José Gibergans-Báguena and José Luis D́ıaz-Barrero, Bar-
celona Tech, Barcelona, Spain.
(Vol. 51.2, May 2013)

Let n be a positive integer. Prove that

1

n
n

√

√

√

√

n
∏

i=1

(

1 +
FnFn+1

F 2
i

)

≥ 1 + n

√

√

√

√

n
∏

i=1

F 2
i

FnFn+1
.

Solution by Robinson Higuita, Universidad de Antioquia, Colombia.
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We know that
∑n

i=1 F
2
i = FnFn+1. This and the AM-GM inequality imply that

1

n
n

√

√

√

√

n
∏

i=1

(

1 +
FnFn+1

F 2
i

)

=
1

n

√

∏n
i=1 F

2
i





n

√

∏n
i=1(F

2
i + FnFn+1)

n





≥ n
∑n

i=1 F
2
i





n

√

∏n
i=1(F

2
i + FnFn+1)

n





≥
n

√

∏n
i=1(F

2
i + FnFn+1)

n
√
∏n

i=1 FnFn+1

≥ n

√

√

√

√

n
∏

i=1

(

F 2
i

FnFn+1
+ 1

)

. (1)

Let ci =
F 2
i

FnFn+1
, therefore, by AM-GM inequality we have that

n

√

1
∏n

i=1(ci + 1)
+ n

√

∏n
i=1 ci

∏n
i=1(ci + 1)

≤
∑n

i=1
1

ci+1 +
∑n

i=1
ci

ci+1

n
≤ 1.

Thus,

n

√

√

√

√

n
∏

i=1

(

F 2
i

FnFn+1
+ 1

)

≥ 1 + n

√

√

√

√

n
∏

i=1

F 2
i

FnFn+1
. (2)

Therefore, the proof follows from (1) and (2).

Remark. A generalization of (2) can be found in [1, p. 17].

References

[1] W. J. Kaczor, Problems in Mathematical Analysis I, AMS, 2000.

Also solved by Dmitry Fleischman, Natalie Hilbert and Michael Kubicek (jointly)

(students), Ángel Plaza, and the proposer.

A Part of a Bigger Problem!

B-1127 Proposed by George A. Hisert, Berkeley, California.
(Vol. 51.2, May 2013)

Prove that, for any integer n > 2,

−17F 4
n−2 + 57F 4

n−1 + 402F 4
n + 113F 4

n+1 − 25F 4
n+2 = 2F 2

n−3L
2
n+3 (1)

and
−17L4

n−2 + 57L4
n−1 + 402L4

n + 113L4
n+1 − 25L4

n+2 = 50L2
n−3F

2
n+3. (2)

Solution by Cheng Lien Lang, Shou University, and Mong Lung Lang, Republic
of Singapore (jointly).
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Let X(n) be a product of four recurrences, each of which satisfies the recurrence xn =
xn−1 +Xn−2. Applying Jarden’s Theorem [1], X(n) satisfies the recurrence

X(n+ 5) = 5X(n + 4) + 15X(n + 3)− 15X(n + 2)− 5X(n + 1) +X(n). (3)

Let k be a constant and let X(n), Y (n) be sequences that satisfy (3) of the above. It is easy
to show that k(X(n) and X(n)± Y (n) satisfy (3) as well.

Denote by A(n) and B(n) the left- and right-hand side of (1), respectively. Applying the
above results, both A(n) and B(n) satisfy the recurrence (3). Hence, A(n) = B(n) for all n if
and only if A(n) = B(n) for n = 0, 1, 2, 3, 4 which can be verified easily. Equation (2) can be
proved similarly.

The technique can be used to prove various identities [2].

References

[1] D. Jarden, Recurring Sequences, 2nd ed., Jerusalem, Riveon Lematematika, 1966.
[2] C. L. Lang and M. L. Lang, Generalized Binomial Coefficients and Jarden’s Theorem, preprint,

arXiv:math/1305.2146v2 [math.NT], 2013.

Also solved by Kenneth B. Davenport, Russell Jay Hendel, Ángel Plaza, and the
proposer.

It Could Be A Rational Bound

B-1128 Proposed by José Luis D́ıaz-Barrero, Barcelona Tech, Barcelona, Spain.
(Vol. 51.2, May 2013)

Let n be a positive integer. Prove that
(

F 2
n+2

1 + F 2
n+1

)

(

1− F−2
n − F−2

n+1

F 2
n

)

<

√
3

4
.

Solution by Brian D. Beasley, Presbyterian College, SC.

For each positive integer n, we let

g(n) =

(

F 2
n+2

1 + F 2
n+1

)

(

1− F−2
n − F−2

n+1

F 2
n

)

and show that g(n) ≤ g(3) = 115/288 <
√
3/4.

We have

g(n) =
(Fn+1 + Fn)

2(F 2
nF

2
n+1 − F 2

n+1 − F 2
n)

F 4
nF

2
n+1(1 + F 2

n+1)
<

(2Fn+1)
2F 2

nF
2
n+1

F 4
nF

4
n+1

=
4

F 2
n

.

Hence, for n ≥ 5, we obtain g(n) < 4/F 2
n ≤ 4/F 2

5 = 4/25. We verify that g(1) = −2,
g(2) = −9/20, g(3) = 115/288, and g(4) = 6112/26325, thus completing the proof.

Also solved by Dmitry Fleischman, Russell Jay Hendel, Robinson Higuita and
Bilson Castro (jointly), Natalie Hilbert and Michael Kubicek (jointly, students),

Michael Lehotsky (student), Ángel Plaza, David Stone and John Hawkins (jointly),
and the proposer.
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Inequalities Generalized

B-1129 Proposed by D. M. Bătineţu–Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade Secondary
School, Buzău, Romania.
(Vol. 51.2, May 2013)

Prove that
2(Ln+2 − 3)2 ≤ (5F2n+1 − 4)n (1)

and
2(Fn+2 − 1)2 ≤ nF2n+1 (2)

for any positive integer n.

Solution by Natalie Hilbert and Michael Kubicek (jointly) students at California
University of Pennsylvania (CALURMA), California, PA.

Proof. We prove a more general result, namely

2(Gn+2 − b)2 ≤ [(3a − b)G2n+1 − µF2n+1 + 2a(a− b)]n, (3)

where {Gn}n∈N is the generalized Fibonacci sequence with G1 = a, G2 = b, and µ = a2+ab−b2.
Using Cauchy-Schwarz inequality [2],

∑n
i=1Gi = Gn+2 − b [1, Example 11, p. 113], and

∑n
i=1G

2
i = GnGn+1 + a(a− b) [1, Example 14, p. 113], it is easy to see that

2(Gn+2 − b)2 = 2

(

n
∑

i=1

Gi

)2

≤ 2n

n
∑

i=1

G2
i

= 2n[GnGn+1 + a(a− b)] = n[2GnGn+1 + 2a(a− b)]

≤ n[G2
n +G2

n+1 + 2a(a− b)]. (4)

The equality G2
n+G2

n+1 = (3a− b)G2n+1 −µF2n+1, see [1, Example 25, p. 113], and (4) prove
inequality (3). Inequalities (1) and (2) are obtained from (3) by setting a = 1, b = 3, and
a = b = 1, respectively. �

References

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley, New York, 2001.
[2] WolframMathWorld, Cauchy-Schwarz, November 7, 2013,

http://mathworld.wolfram.com/CauchysInequality.html.

Also solved by Dmitry Fleischman, Russell Jay Hendel, Robinson Higuita, Ángel
Plaza, and the proposer.
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Almost Déjà vu!

B-1130 Proposed by D. M. Bătineţu–Giurgiu, Neculai Stanciu, and Gabriel Tica,
Romania.
(Vol. 51.2, May 2013)

Prove that
n
∑

k=1

F 2m+2
k

k3m
≥

4mFm+1
n Fm+1

n+1

n2m(n+ 1)2m

for all positive real numbers m.

Solution by Rachel Graves, The Military College of South Carolina, SC and Ken-
neth B. Davenport, Dallas, PA (separately).

We solve this problem similar to Paul S. Bruckman’s solution to problem B-1108. It is

well-known that
∑n

k=1 k
3 = n2(n+1)2

4 and
∑n

k=1 F
2
k = FnFn+1. We use these identities and

Hölder’s Inequality to prove that the proposed inequality is true.
Hölder’s Inequality states that if {ak}k≥1 and {bk}k≥1 are non-negative sequences, and for

all p > 0 and q > 0 such that 1
p
+ 1

q
= 1 and n ≥ 1, then

n
∑

k=1

akbk ≤
(

n
∑

k=1

ap
k

)
1

p
(

n
∑

k=1

bq
k

)
1

q

.

Let ak = (k3)
1

p , bk =
F 3
k

(k3)
1
p

. Substituting in Hölder’s Inequality, we obtain

n
∑

k=1

(k3)
1

p

(

F 2
k

(k3)
1

p

)

≤
(

n
∑

k=1

(

(k3)
1

p

)p

) 1

p
(

n
∑

k=1

(

F 2
k

(k3)
1

p

)q) 1

q

,

which simplifies to

∑

k=1

F 2
k ≤

(

n
∑

k=1

k3

)
1

p
(

n
∑

k=1

F 2q
k

(k3)
q

p

)
1

q

.

Raising both sides of the inequality to the power of q, we have
(

n
∑

k=1

F 2
k

)q

≤
(

n
∑

k=1

k3

)
q

p
(

n
∑

k=1

F 2q
k

(k3)
q

p

)

.

We now can see that we should let q = m + 1 and it follows that p = m
m+1 . Substituting

these values gives

(FnFn+1)
m+1 ≤

(

n(n+ 1)

2

)2m
(

n
∑

k=1

F 2m+2
k

k3m

)

.

This inequality can easily be rewritten as

4m(FnFn+1)
m+1

n2m(n + 1)2m
≤

n
∑

k=1

F 2m+2
k

k3m
.
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Also solved by Dmitry Fleischman, Robinson Higuita and Bilson Castro (jointly),

Ángel Plaza, and the proposer.

We would like to acknowledge the solutions to problems B-1116 and B-1120 by Anastasios
Kotronis, B-1121 by Kenneth Davenport, and B-1124 by Rattanapol Wasutharat.
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