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include references rather than quoting “well-known results”.

The content of the problem sections of The Fibonacci Quarterly are all available on the web
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BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1136 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that
n
∑

k=1

(FkFk+1)
3 =

(

n
∑

k=1

F 2
kFk+1

)2

.
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B-1137 Proposed by D. M. Bătineţu–Giurgiu, “Matei Basarab” National Col-
lege, Bucharest, Romania and Neculai Stanciu, “George Emil Palade”
School, Buzău, Romania.

Prove that

2n
∑

k=0

(−1)k
(

2n

k

)

Lk
m + Lk

m+1

Lk
m+2

=
L2n
m + L2n

m+1

L2n
m+2

for any positive integer n; (1)

and
2n
∑

k=0

(−1)k
(

2n

k

)

F k
m + F k

m+1

F k
m+2

=
F 2n
m + F 2n

m+1

F 2n
m+2

for any positive integer n. (2)

B-1138 Proposed by D. M. Bătineţu–Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School,
Buzău, Romania.

Prove that if m > 0 and p > 0, then
(

n
∑

k=1

Fm+1
k

Lm
k

)(

n
∑

k=1

F p+1
k

Lp
k

)

≥ (Fn+2 − 1)m+p+2

(Ln − 3)m+p
,

for any positive integer n.

B-1139 Proposed by D. M. Bătineţu–Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School,
Buzău, Romania.

Prove that
n
∑

k=1

(1 + F 2
k + L2

k)
2 > 4(FnFn+1 + LnLn+1)− 8,

for any positive integer n.

B-1140 Proposed by José Luis D́ıaz-Barrero, BARCELONA TECH, Barcelona,
Spain.

Let n ≥ 2 be a positive integer. Show that

1

2

(

F 3
n

Fn+1(Fn+1 − Fn)
+

F 3
n+1

Fn(Fn − Fn+1)
+

F 3
n+2

Fn+1(Fn+2 − Fn+1)

)

is an integer and determine its value.
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SOLUTIONS

In recognition of his invaluable contributions to the Fibonacci Quarterly, we are dedicating
this issue to the late Paul S. Bruckman. Paul had solved all of the problems appearing in this
section during our tenure as co-editors, and we are featuring his solutions to all the problems
in this issue. He will be missed.

Another Division by 5

B-1116 Proposed by M. N. Deshpande, Nagpur, India.
(Vol. 50.4, November 2012)

Let n be a nonnegative integer and let Tn be the nth triangular number. Prove that each
of the following is divisible by 5:

nLn+1 + 2Fn (1)

TnLn+1 + (n+ 1)Fn (2)

Solution by Paul S. Bruckman, Nanaimo, BC, Canada.

The sequence {Ln (mod 5)}∞n=1 is periodic with period 4; the (repeating) period is {1, 3,
4, 2}. This is the same as the sequence {Ln+1 (mod 5)}∞n=0. The sequence {nLn+1 (mod 5)}∞n=0

is readily seen to be periodic with period 20. We find that its repeating period is as follows:
{0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3}. Also, the sequence {2Fn (mod 5)}∞n=0 is peri-
odic with period 20. Its repeating period is seen to be as follows: {0, 2, 2, 4, 1, 0, 1, 1, 2, 3, 0, 3, 3,
1, 4, 0, 4, 4, 3, 2}. It then readily follows that the sequence {(nLn+1 +2Fn) (mod 5)}∞n=0 is pe-
riodic with a period of 1, and its repeating period is {0}. That is, the first given sequence is
divisible by 5 for all n ≥ 0.

If un = nLn+1 + 2Fn and vn = TnLn+1 + (n+ 1)Fn, we have shown that 5|un for all n ≥ 0.

Since Tn = n(n + 1)/2, we see that vn = (n+1)
2 un. If n is odd, this immediately implies that

5|vn for all odd n ≥ 1. However, vn is clearly an integer. It must therefore be true that 5|vn
for all even n ≥ 0, which proves that 5|vn for all n ≥ 0.

Also solved by Scott H. Brown, Michael R. Bacon and Charles C. Cook (jointly),
Edwardo H. M. Brietzke, Kenneth B. Davenport, Dmitry Fleischman, Amos
E. Gera, Ralph P. Grinaldi, Russell Jay Hendel, Robinson Higuita, Zbigniew
Jacubczyck, Parviz Khalili, Harris Kwong, Kathleen E. Lewis, Zachary McCaslin,
Ángel Plaza and Sergio Falcón (jointly), David Stone and John Hawkins (jointly),
Rattanapol Wasutharat, and the proposer.

Two Sums with Square Roots

B-1117 Proposed by D. M. Bătineţu–Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School,
Buzău, Romania.
(Vol. 50.4, November 2012)
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Prove that:
n
∑

k=1

(

√

F 4
k
− F 2

k
+ 1 +

F 2
k − 1

F 4
k + 1

)

< FnFn+1 (1)

n
∑

k=1

(

√

L4
k
− L2

k
+ 1 +

L2
k − 1

L4
k + 1

)

< LnLn+1 − 2 (2)

for any positive integer n.

Solution by Paul S. Bruckman, Nanaimo, BC, Canada.

Let

Sn =

n
∑

k=1

(

√

F 4
k − F 2

k + 1 +
F 2
k − 1

F 4
k + 1

)

, Tn =

n
∑

k=1

(

√

L4
k − L2

k + 1 +
L2
k − 1

L4
k + 1

)

, n = 1, 2, . . . .

(1)
We also use the following known identities:

n
∑

k=1

F 2
k = FnFn+1;

n
∑

k=1

L2
k = LnLn+1 − 2. (2)

It suffices to prove the following, valid for all x ≥ 1:
√

x2 − x+ 1 +
x− 1

x2 + 1
≤ x. (3)

For if (3) is true, then setting x = F 2
k or x = L2

k in (3) and using (2) implies Sn ≤ FnFn+1,
Tn ≤ LnLn+1 − 2. This is a slightly weaker result than the desired original, since we find that
equality holds for n = 1 (i.e. x = 1).

Proof of (3). Given x ≥ 1, let

G(x) = x−
√

x2 − x+ 1− x− 1

x2 + 1
=

x3 + 1

x+ 1
−
√

x2 − x+ 1 =
x3 + 1

x+ 1
−
√

x3 + 1

x+ 1

which is manifestly ≥ 0 for all x ≥ 1. This proves (3). �

Also solved by Charles C. Cook, Kenneth B. Davenport, Dmitry Fleischman,
Amos E. Gera, Russell Jay Hendel, Robinson Higuita, Zbigniew Jacubczyck,
Parviz Khalili, Harris Kwong, Kathleen E. Lewis, Ángel Plaza, Marielle Silvio
and Kasey Zemba (jointly), and the proposer.

Quadratic Identities

B-1118 Proposed by Gordon Clarke, Brisbane, Australia.
(Vol. 50.4, November 2012)

If n is a nonnegative integer, prove that:
(

F 2
n + F 2

n+1

) (

F 2
n+2 + F 2

n+3

)

= F 2
2n+3 + 1 (1)

(

F 2
n + F 2

n+2

) (

F 2
n+4 + F 2

n+6

)

= F 2
2n+6 +

(

2F 2
n+3 ± 5

)2
. (2)

Solution by Paul S. Bruckman, Nanaimo, BC, Canada.

370 VOLUME 51, NUMBER 4



ELEMENTARY PROBLEMS AND SOLUTIONS

Part (1). We use the following known identity:

F 2
n + F 2

n+1 = F2n+1.

Then also, F 2
n+1 + F 2

n+3 = F2n+5. Therefore, the left side of (1) equals F2n+1F2n+5. We now

use the following known identity: FmFm+4 −F 2
m+2 = (−1)m−1. Therefore, setting m = 2n+1

in the left side of (1) yields F2n+1F2n+5 = F 2
2n+3 + 1.

Part (2). We use the following known identities:

F 2
n + F 2

n+2 = 3F 2
n+1 − 2(−1)n and F 2

m + F 2
m+4 = 7F 2

m+2 + 2(−1)m.

Then also F 2
n+4 + F 2

n+6 = 3F 2
n+5 − 2(−1)n. The left side of (2) then becomes

{3F 2
n+1 − 2(−1)n}{3F 2

n+5 − 2(−1)n} = 9(Fn+1Fn+5)
2 − 6(−1)n{F 2

n+1F
2
n+5}+ 4;

from Part (1), with m = n + 1, Fn+1Fn+5 = F 2
n+3 + (−1)n. Also, with m = n+ 1, we obtain

F 2
n+1 + F 2

n+5 = 7F 2
n+3 − 2(−1)n. Then the left side of (2) equals

9{F 2
n+3 + (−1)n}2 − 6(−1)n{F 2

n+1 + F 2
n+5}+ 4.

The left side of (2) then becomes

9{F 2
n+3 + (−1)n}2 − 6(−1)n{7F 2

n+3 − 2(−1)n}+ 4

= 9F 4
n+3 + (18− 42)(−1)nF 2

n+3 + (9 + 12 + 4)

= 9F 4
n+3 − 24(−1)nF 2

n+3 + 25

= 5F 4
n+3 − 4(−1)nF 2

n+3 + {2F 2
n+3 − 5(−1)n}2

= F 2
n+3{5F 2

n+3 − 4(−1)n}+ {2F 2
n+3 − 5(−1)n}2

= F 2
n+3L

2
n+3 + {2F 2

n+3 − 5(−1)n}2

= F 2
2n+6 + {2F 2

n+3 − 5(−1)n}2.

George A. Heisert used a nontraditional approach to solve the problem. The technique
(called dual polynomial method) is explained in detail in his article “A different method for
Deriving Fibonacci Power Identities,” JP Journal of Algebra, Number Theory and Applica-
tions, 24 (2012), 1–26.

Also solved by Charles C. Cook, Kenneth B. Davenport, Dmitry G. Fleishman,
Amos E. Gera, George A. Heisert, Russell Jay Hendel, Zbigniew Jakubczyk, Har-
ris Kwong, Carl Libis, Ángel Plaza and Sergio Falcón (jointly), and the proposer.

A Trig and Fibonacci Amalgam

B-1119 Proposed by D. M. Bătineţu–Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School,
Buzău, Romania.
(Vol. 50.4, November 2012)

NOVEMBER 2013 371



THE FIBONACCI QUARTERLY

Prove that
n
∑

k=1

tan2 x
2k

2kF 2
k

≥
(

cot x
2n − 2n+1 cot 2x

)2

22nFnFn+1
, for any x ∈

(

0,
π

4

)

.

Solution by Paul S. Bruckman, Nanaimo, BC, Canada.

In the following manipulations, all trigonometric functions are well-defined and positive in
the open interval x ∈ (0, π/4). We first observe that the proposed inequality, as presently
stated, is false. To see this, we let n = 1, x = π/6.

The left member of the proposed inequality is 1
2 tan

2
(

π
12

)

= 3.5 − 2
√
3 ≈ 0.036; the right

member is {cot(π/12)−4 cot(π/3)}2/4 = (13−4
√
3)/12 ≈ 0.506. Thus, the proposed inequality

is clearly false.
We believe that the proposer intended to show the following inequality:
n
∑

k=1

tan2 x
2k

22kF 2
k

≥
{

cot
( x

2n

)

− 2n cot(x)
}2

/22nFnFn+1, n = 1, 2, . . . , for all x ∈ (0, π/4). (1)

We first make the following definitions for k = 1, 2, . . . , n: uk = x
2k
; ak = tan uk

2kFk

, bk = Fk;

therefore, akbk = tan uk

2k
. Let

S = S(x, n) =
n
∑

k=1

tan2 uk
22kF 2

k

=
n
∑

k=1

a2k.

We also recall the following well-known identity:
n
∑

k=1

b2k =

n
∑

k=1

F 2
k = FnFn+1.

We now invoke the Cauchy-Schwarz inequality:
{

n
∑

k=1

akbk

}2

≤
{

n
∑

k=1

a2k

}{

n
∑

k=1

b2k

}

.

Therefore,
{
∑n

k=1
tan uk

2k

}2 ≤ FnFn+1S or

S ≥
{

n
∑

k=1

tanuk
2k

}2

/FnFn+1. (2)

We now employ the following trigonometric identity, valid for z ∈ (0, π/2)

cot z − 2 cot 2z = tan z. (3)

We may easily verify (3) from the definitions of the indicated functions.
Setting z = uk, we then have tanuk = cot uk − 2 cot 2uk = cot

(

x
2k

)

− 2 cot
(

x
2k−1

)

; then

tan uk
2k

=
cot(x/2k)

2k
− cot(x/2k−1)

2k−1
.

From this, it follows by telescoping that
n
∑

k=1

tan uk
2k

=
cot un
2n

− cot x. (4)
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Proof of (1). By (2) and (4),

S ≥
{

cot
(

x
2n

)

2n
− cot(x)

}2

/FnFn+1, or S ≥
{

cot
( x

2n

)

− 2n cot(x)
}2

/22nFnFn+1. (5)

Equality occurs if and only if n = 1; in this case both sides are equal to
(

tan(x/2)

2

)2

=

(

cot(x/2) − 2 cot(x)

2

)2

.

For n = 1 and x = π/6, each side equals 1.7 −
√
3 ≈ .0179492.

Higuita took a different route and corrected the proposed inequality by starting the sum at
k = 0.

Also solved by Kenneth B. Davenport, Dmitry Fleischman, Robinson Higuita,
and the proposer.

Periodic Sequences

B-1120 Proposed by the Problem Editor.
(Vol. 50.4, November 2012)

Prove or disprove: Fn ≡ 2n3n (mod 5) for all nonnegative integers n.

Solution by Paul S. Bruckman, Nanaimo, BC, Canada.

The sequence {Fn (mod 5)}∞n=0 is periodic with period 20. Its repeating period is found to
be as follows: {0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1}. On the other hand, the sequence
{2n (mod 5)}∞n=0 is periodic with period 5; its repeating period is {0, 2, 4, 1, 3}. Also the
sequence {3n (mod 5)}∞n=0 is periodic with period 4; its repeating period is {1, 3, 4, 2}. There-
fore, the sequence {2n3n (mod 5)}∞n=0 is periodic with period 20 equal to GCM(4,5). We
find that its repeating period is the same as that of {Fn (mod 5)}∞n=0. Therefore, Fn ≡ 2n3n

(mod 5) for all n ≥ 0. The conjecture is true.

Also solved by Edwardo H. M. Brietzke, Michael J. Buckmarter, Charles C. Cook,
Kenneth B. Davenport, Dmitry Fleischman, Amos E. Gera, Ralph P. Grimaldi,
Russell J. Hendel, Robinson Higuita, Harris Kwong, Kathleen E. Lewis, Carl
Libis, Marielle Silvio and Kasey Zemba (jointly), David Stone and John Hawkins
(jointly), Matt Zinkle, and the proposer.

Solution to Problem 1114 was published in the August, 2013 issue. We list here the name
of additional solvers: Brian Beasley, Paul S. Bruckman, Russell Jay Hendel, Gurdial Aroroa
and Sindhu Unnithan (jointly).

We would like to belatedly acknowledge Charles Cook for solving problem B-1112.
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