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BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1216 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.

Prove that, for any positive real number m, and any positive integer n,

Fm
n Fm

n+1

n
∑

k=1

Lm+1
k

F 2m
k

≥ nm+1

(

n
∏

k=1

Lk

)
m+1

n

.

B-1217 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Let Mki = 2(i−1)kiLki . For integers r ≥ 1 and n ≥ 0, find a closed form expression for the
sum

Sn =
∑

0≤k,k1,...,kr≤n

k+k1+···+kr=n

FkMk1Mk2 · · ·Mkr

k! k1! k2! · · · kr!
.

NOVEMBER 2017 367



THE FIBONACCI QUARTERLY

B-1218 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precapathian National Uni-
versity, Ivano-Frankivsk, Ukraine.

Find a closed form expression for

(Ln+1−1)Fn(F2n+2−Fn+2)+(1−Fn−Fn+2)Fn+2(F2n+2−Fn+3)+(F2n+2−Fn+2)(F2n+2−Fn+3).

B-1219 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.

Prove that, for any integer n ≥ 2,

F 4
n + F 2

n + 1

Fn
+

n−1
∑

k=1

F 4
k + F 2

kF
2
k+1 + F 4

k+1

FkFk+1
> 3FnFn+1.

B-1220 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that
∞
∏

n=3

(

1− 1

F 4
n

)

=
α5

12
.

SOLUTIONS

Symmetric Functions

B-1196 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 54.4, November 2016)

For any integer n, prove that

L5
n+2 − L5

n+1 − L5
n−1 − L5

n−2

L3
n+2 − L3

n+1 − L3
n−1 − L3

n−2

= 5 · F
5
n+2 − F 5

n+1 − F 5
n−1 − F 5

n−2

F 3
n+2 − F 3

n+1 − F 3
n−1 − F 3

n−2

.

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

The denominators on both sides of the identity become zero when n = 0, so we shall assume
n 6= 0. The LHS can be written as

(a+ b+ c)5 − a5 − b5 − c5

(a+ b+ c)3 − a3 − b3 − c3
,

where a = Ln+1, b = Ln−1, and c = Ln−2. Both numerator and denominator are symmetric
functions in a, b, and c. Noting that (a+ b+ c)5 − a5 − b5 − c5 = 0 when a = −b, b = −c, or
c = −a, we deduce that

(a+ b+ c)5 − a5 − b5 − c5 = (a+ b)(b+ c)(c+ a)[k(a2 + b2 + c2) + ℓ(ab+ bc+ ca)]

for some constants k and ℓ. By setting (a, b, c) to (1, 1, 0) and (1, 1, 1) respectively, we obtain
2k + ℓ = 15 and k + ℓ = 10. The solution is k = ℓ = 5. Similarly, we find

(a+ b+ c)3 − a3 − b3 − c3 = 3(a+ b)(b+ c)(c + a).
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Since
(a+ b)(b+ c)(c + a) = (Ln+1 + Ln−1)Ln(Ln+1 + Ln−2) = 10FnL

2
n 6= 0,

the LHS of the given identity simplifies to

5

3
(a2 + b2 + c2 + ab+ bc+ ca) =

5

6
[(a+ b+ c)2 + a2 + b2 + c2].

A similar argument can be applied to the RHS of the given identity. Hence, for n 6= 0, the
identity is equivalent to

L2
n+2 + L2

n+1 + L2
n−1 + L2

n−2 = 5(F 2
n+2 + F 2

n+1 + F 2
n−1 + F 2

n−2).

The proof is completed by observing that

L2
m + L2

m−1 = 5(F 2
m + F 2

m−1)

for any integer m.

Editor’s Notes. Several solvers showed that both sides of the identity equal to 25
3 L2n when

n 6= 0. The identity would have been valid even when n = 0 if we rewrite it as

(L5
n+2 − L5

n+1 − L5
n−1 − L5

n−2)(F
3
n+2 − F 3

n+1 − F 3
n−1 − F 3

n−2)

= 5(F 5
n+2 − F 5

n+1 − F 5
n−1 − F 5

n−2)(L
3
n+2 − L3

n+1 − L3
n−1 − L3

n−2).

Hisert remarked that the identity also holds for any pair of Fibonacci-Lucas type second-
order recurrence relations (provided that the denominators are nonzero) with an appropriate
adjustment in the factor 5. The details are left to the readers as an exercise.

Also solved by Brian D. Beasley, I. V. Fedak, Dmitry Fleischman, George A.
Hisert, Nuerttin Irmak, David Terr, Welfare Wang (student), and the proposer.

Bergström and Cauchy-Schwarz

B-1197 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade Sec-
ondary School, Buzău, Romania.
(Vol. 54.4, November 2016)

Let a and b be positive real numbers. For any positive integer n, prove each of the following:

(i)

n
∑

k=1

F 4
k

aLk + bF 2
k

>
F 2
nF

2
n+1

a(Ln+2 − 3) + bFnFn+1
;

(ii)

n
∑

k=1

F 4
k

aFn+2 + bFk − a
>

F 2
nF

2
n+1

(an+ b)(Fn+2 − 1)
.

Solution by Wei-Kai Lai and John Risher (student), University of South Carolina
Salkehatchie, Walterboro, SC.

Note that both strict inequality signs > should be replaced by inequality signs ≥, as equality
does occur when n = 1 in both cases.

Proof of (i): Bergström’s inequality, which is a special case of Radon’s inequality, states
that

x21
y1

+
x22
y2

+ · · ·+ x2n
yn

≥ (x1 + x2 + · · ·+ xn)
2

y1 + y2 · · ·+ yn
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for any positive xis and yis. Applying this inequality, we have

n
∑

k=1

F 4
k

aLk + bF 2
k

≥
(
∑n

i=1 F
2
i

)2

a
∑n

i=1 Li + b
∑n

i=1 F
2
i

.

Since
∑n

i=1 F
2
i = FnFn+1, and

∑n
i=1 Li = Ln+2 − 3,

(
∑n

i=1 F
2
i

)2

a
∑n

i=1 Li + b
∑n

i=1 F
2
i

=
F 2
nF

2
n+1

a(Ln+2 − 3) + bFnFn+2
,

hence completing the proof.
Proof of (ii): According to Bergström’s inequality again,

n
∑

k=1

F 4
k

aFn+2 + bFk − a
≥

(
∑n

i=1 F
2
i

)2

an(Fn+2 − 1) + b
∑n

i=1 Fi
.

Since
∑n

i=1 F
2
i = FnFn+1, and

∑n
i=1 Fi = Fn+2 − 1,

(
∑n

i=1 F
2
i

)2

an(Fn+2 − 1) + b
∑n

i=1 Fi
=

F 2
nF

2
n+1

(an+ b)(Fn+2 − 1)
,

hence completing the proof.
A closing remark: for Bergström’s inequality, it requires either x1

y1
= x2

y2
= · · · = xn

yn
or n = 1

to reach equality. For both inequalities we just proved, the only case of equality is when n = 1.

Editor’s Notes: Bergström’s inequality can be viewed as a consequence of Cauchy-Schwarz
inequality. As Ohtsuka pointed out, for ak > 0,

(

n
∑

k=1

ak

)(

n
∑

k=1

F 4
k

ak

)

=

[

n
∑

k=1

(
√
ak )

2

][

n
∑

k=1

(

F 2
k√
ak

)2
]

≥
(

n
∑

k=1

F 2
k

)2

= F 2
nF

2
n+1,

from which the desired results follow by letting ak = aLk + bF 2
k , and ak = an+2 + bFk − n,

respectively.

Also solved by Brian Bradie, I. V. Fedak, Dmitry Fleischman, Cai Yan Ho (stu-

dent), Hideyuki Ohtsuka, Ángel Plaza, Henry Ricardo, and the proposer.

An Infinite Sum of Arctangent

B-1198 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 54.4, November 2016)

Let c be a positive integer. The sequence {an} is defined by, for n ≥ 1,

an+2 = an + 2c,

with a1 = 1 and a2 = 3. Prove that

(i)
∞
∑

n=1

tan−1 Fc

Fan+c
=

π

4
, if c is even;

(ii)
∞
∑

n=1

tan−1 Lc

Lan+c
=

π

4
, if c is odd.
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Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

We will use Binet’s formulas and that tan−1 y−x
1+xy = tan−1 y − tan−1 x. Then, for the first

sum, and taking into account that c is even implies that an + c is odd for n ≥ 1, we have

tan−1 Fc

Fan+c
= tan−1 αc − βc

αan+c − βan+c

= tan−1 αc − α−c

αan+c + α−an−c

= tan−1 α
−an − α−an−2c

1 + α−2an−2c

= tan−1 α−an − tan−1 α−an−2c

= tan−1 α−an − tan−1 α−an+2 .

Therefore, the series telescopes. Thus,
∞
∑

n=1

tan−1 Fc

Fan+c
=

∞
∑

n=1

(

tan−1 α−an − tan−1 α−an+2
)

= tan−1 α−1 + tan−1 α−3.

It can be further simplified to
∞
∑

n=1

tan−1 Fc

Fan+c
= tan−1 α

−1 + α−3

1− α−4
= tan−1 α− β

α2 − β2
= tan−1 1

α+ β
.

Thus,
∞
∑

n=1

tan−1 Fc

Fan+c
= tan−1 1 =

π

4
.

The second identity follows analogously.

Also solved by I. V. Fedak, Dmitry Fleischman, and the proposer.

Another Sury-Type Identity

B-1199 Proposed by Ángel Plaza and Sergio Falcón, Universidad de Las Palmas
de Gran Canaria, Spain.
(Vol. 54.4, November 2016)

For any positive integer number k, the k-Fibonacci and k-Lucas sequences, say {Fk,n}n∈N
and {Lk,n}n∈N, both are defined recursively by un+1 = kun + un−1 for n ≥ 1, with respective
initial conditions Fk,0 = 0, Fk,1 = 1, and Lk,0 = 2, Lk,1 = k. Prove that for all integers m ≥ 1
and r ≥ 1,

krm+1Fk,m+1 =
m
∑

i=0

riLk,i + (kr − 2)
m+1
∑

i=0

ir−1Fk.i.

Solution by Brian Bradie, Christopher Newport University, Newport, VA.

Define Fk,−1 = 1 and note that this value satisfies the two-term recurrence relation defining
Fk,n for n = 0. Next, observe that

Lk,0 = 2 = 1 + 1 = Fk,−1 + Fk,1,

Lk.1 = k = 0 + k = Fk,0 + Fk,2.

NOVEMBER 2017 371



THE FIBONACCI QUARTERLY

Now, suppose that Lk,i = Fk,i−1 + Fk.i+1 for i = 0, 1, 2, . . . , n, where n ≥ 1. Then

Lk,n+1 = kLk,n + Lk,n−1

= k(Fk,n−1 + Fk,n+1) + Fk,n−2 + Fk.n

= (kFk,n−1 + Fk.n−2) + (kFk,n+1 + Fk,n)

= Fk,n + Fk.n+2.

Thus, Lk,i = Fk,i−1 + Fk,i+1 for all i ≥ 0 by induction. With this relationship, it follows that

m
∑

i=0

riLk,i + kr

m+1
∑

i=0

ri−1Fk.i =

m
∑

i=0

ri(Fk,i−1 + Fk,i+1) + k

m+1
∑

i=0

riFk,i

=
m
∑

i=0

ri(Fk,i−1 + kFk,i + Fk,i+1) + krm+1Fk,m+1

= 2
m
∑

i=0

riFk,i+1 + krm+1Fk,m+1

= 2

m+1
∑

i=1

ri−1Fk,i + krm+1Fk,m+1

= 2

m+1
∑

i=0

ri−1Fk,i + krm+1Fk,m+1.

because Fk,0 = 0. Subtracting 2
∑m+1

i=0 ri−1Fk,i from both sides of this last expression yields

krm+1Fk,m+1 =
m
∑

i=0

riLk,i + (kr − 2)
m+1
∑

i=0

ri−1Fk.i.

Editor’s Notes: Davenport noted that the special case of k = 1 can be found in [1], which is
a generalization of an identity obatined by Sury [2].
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Also solved by Kenny B. Davenport, I. V. Fedak, Dmitry Fleischman, Kantaphon
Kuhapatanakul, David Terr, and the proposer.

Harmonic and Fiboancci/Lucas Numbers

B-1200 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 54.4, November 2016)

Let Hn denote the nth harmonic number. Prove that

(i)

∞
∑

n=1

HnFn

2n
= log

(

4α12/
√
5
)

and (ii)

∞
∑

n=1

HnLn

2n
= log

(

64α4
√
5
)

.
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Solution by Kenny B. Davenport, Dallas, PA.

The generating function for Hn is known to be
∞
∑

n=1

Hnx
n =

1

1− x
ln

(

1

1− x

)

.

Thus, using the Binet form for the Fibonacci numbers, we obtain
∞
∑

n=1

HnFn

2n
=

1√
5

∞
∑

n=1

Hn

[

(α

2

)n
−
(

β

2

)n]

=
1√
5

[

1

1− α
2

ln

(

1

1− α
2

)

− 1

1− β
2

ln

(

1

1− β
2

)]

.

Since
1

1− α
2

= 3 +
√
5 = 2α2, and

1

1− B
2

= 3−
√
5 = 2α−2,

we can write
∞
∑

n=1

HnFn

2n
=

2α2 ln(2α2)− 2α−2 ln(2α−2)√
5

=
2(α2 − α−2) ln 2 + 4(α2 + α−2) lnα√

5

= 2 ln 2 +
12√
5
lnα

because 1√
5
(α2 − α−2) = F2 = 1, and α2 + α−2 = L2 = 3. This completes the proof of (i).

For part (ii), using the same approach, we find
∞
∑

n=1

HnLn

2n
= 2α2 ln(2α2) + 2α−2 ln(2α−2)

= 2(α2 + α−2) ln 2 + 4(α2 − α−2) lnα

= 6 ln 2 + 4
√
5 lnα.

The result is equivalent to the proposer’s form of the solution.

Also solved by Khristo N. Boyadzhiev, Brian Bradie, I. V. Fedak, Dmitry Fleis-
chman, Ángel Plaza, David Terr, and the proposer.
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