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Each problem or solution should be typed on separate sheets. Solutions to problems in this
issue must be received by May 15, 2021. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results.”

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√

5)/2, β = (1−
√

5)/2, Fn = (αn − βn)/
√

5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-408 Proposed by Lawrence Somer, Washington, D.C.
(Vol. 17.3, October 1979)

Let d ∈ {2, 3, . . . } and Gn = Fdn/Fn. Let p be an odd prime and z = z(p) be the least
positive integer n with Fn ≡ 0 (mod p). For d = 2 and z(p) an even integer 2k, it was shown
in B-386 that

Fn+1Gn+k ≡ FnGn+k+1 (mod p).

Establish a generalization for d ≥ 2.

Editor’s Note: This is another old problem from more than 40 years ago. No solutions have
appeared, so we feature the problem again, and invite the readers to solve it.

B-1276 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that
∞∑
n=1

F2n

(L2
n − 5)2

=
1

3
.
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B-1277 Proposed by Ivan V. Fedak, Precarpathian National University, Ivano-
Frankivsk, Ukraine.

For all positive integers n, prove that

F 2
n−1

2Fn+2
≤
√
F2n+1

2
−

√√√√ n∑
k=1

F 2
k ≤

F 2
n−1
Fn+2

.

B-1278 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.

Show that the finite product
n∏

k=0

F 2
k+2 + 2Fk+1Fk+2

LkFk+2 + (−1)k+1

is divisible by Ln+2 for each integer n ≥ 0.

B-1279 Proposed by Pridon Davlianidze, Tbilisi, Republic of Georgia.

Prove that

(A)
∞∏
n=1

(
1 +

1

F2nF2n+1

)
= α,

(B)
∞∏
n=1

(
1− 1

F2n−1F2n+2

)
=

1

α
.

B-1280 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

The Tetranacci numbers Tn satisfy

Tn = Tn−1 + Tn−2 + Tn−3 + Tn−4, for n ≥ 3,

with T−1 = T0 = 0 and T1 = T2 = 1. Find a closed form expression for the sum
n∑

k=1

(−1)kT 2
k .

SOLUTIONS

Another Oldie from the Vault

B-886 Proposed by Peter J. Ferraro, Roselle Park, NJ.
(Vol. 37.4, November 1999)

For n ≥ 9, show that
⌊

4
√
Fn

⌋
=
⌊

4
√
Fn−4 + 4

√
Fn−8

⌋
.

Solution by Raphael Schumacher (student), ETH Zurich, Switzerland.

The result for 9 ≤ n ≤ 15 can be verified by explicit computation, so we will assume n ≥ 16.
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Using the Catalan identity, we find Fn−4Fn−8 = F 2
n−6 + (−1)n+1. According to Taylor

expansion,
∣∣√1 + x− 1

∣∣ ≤ |x| over [−1, 1]. Thus,√
Fn−4Fn−8 = Fn−6

√
1 +

(−1)n+1

F 2
n−6

= Fn−6 + E1(n),

with

|E1(n)| ≤ 1

Fn−6
≤ 1

55
.

We also find

F 3
n−4Fn−8 = F 2

n−4
[
F 2
n−6 + (−1)n+1

]
=

(
Fn−4Fn−6

)2
+ (−1)n+1F 2

n−4

=
[
F 2
n−5 + (−1)n+1

]2
+ (−1)n+1F 2

n−4

= F 4
n−5 + (−1)n+1

(
F 2
n−4 + 2F 2

n−5
)

+ 1.

Because
∣∣ 4
√

1 + x− 1
∣∣ ≤ |x| over [−1, 1], we deduce that

4

√
F 3
n−4Fn−8 = Fn−5

4

√
1 +

(−1)n+1
(
F 2
n−4 + 2F 2

n−5
)

+ 1

F 4
n−5

= Fn−5 + E2(n),

where

|E2(n)| ≤
F 2
n−4 + 2F 2

n−5 + 1

F 3
n−5

≤ 5

Fn−5
≤ 5

89
.

In a similar manner, we also determine that

4

√
Fn−4F 3

n−8 = Fn−7
4

√
1 +

(−1)n+1
(
F 2
n−8 + 2F 2

n−7
)

+ 1

F 4
n−7

= Fn−7 + E3(n),

where

|E3(n)| ≤
F 2
n−8 + 2F 2

n−7 + 1

F 3
n−7

≤ 4

Fn−7
≤ 2

17
.

Therefore,(
4
√
Fn−4 + 4

√
Fn−8

)4
= Fn−4 + 4 4

√
F 3
n−4Fn−8 + 6

√
Fn−4Fn−8 + 4 4

√
Fn−4F 3

n−8 + Fn−8

= Fn−4 + 4Fn−5 + 6Fn−6 + 4Fn−7 + Fn−8 +A(n)

= Fn +A(n),

where A(n) = 4E2(n) + 6E1(n) + 4E3(n), with |A(n) < 1. It is well known that F1 = F2 = 1
and F12 = 144 are the only square Fibonacci numbers [1]. This implies that F1 = F2 = 1 are
the only Fibonacci numbers that are perfect fourth powers. Hence, there exists an integer m
such that

m4 < m4 + 1 ≤ Fn ≤ (m+ 1)4 − 1 < (m+ 1)4.

Because |A(n)| < 1, we also have

m4 <
(

4
√
Fn−4 + 4

√
Fn−8

)4
< (m+ 1)4.

It follows immediately that

m =
⌊

4
√
Fn

⌋
=
⌊

4
√
Fn−4 + 4

√
Fn−8

⌋
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for n ≥ 16.

Editor’s Note: Plaza noted that a more general problem appeared in [2]. The partial solution
that appeared in Vol. 108 (2001), 978–979, of the same journal yields the desired result as a
special case.

References

[1] J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc., 39 (1964), 537–540.
[2] Peter J. Ferraro, Problem 10765, Amer. Math. Monthly, 106 (1999), 864.

Also solved by G. C. Greubel, Ángel Plaza, Albert Stadler, and the proposer.

Solving a Quadratic Equation

B-1256 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National Uni-
versity, Ivano-Frankivsk, Ukraine.
(Vol. 57.4, November 2019)

For any positive integers n, find an infinite set of pairs of positive Fibonacci numbers x and
y such that

x2 − xy − y2 = FnFn+1 − Fn−1Fn+2.

Solution by Robert Frontczak, Landesbank Baden-Württemberg, Stuttgart, Ger-
many.

First, we note that

FnFn+1 − Fn−1Fn+2 = (−1)n+1. (1)

Hence, we seek to find solutions of the equation

y2 + xy − x2 + (−1)n+1 = 0,

where n is a fixed positive integer. Solving for y, we find

y =
−x±

√
5x2 + 4(−1)n

2
.

From the identity L2
t = 5F 2

t + 4(−1)t, we see that we can choose x = Fmn+k, provided
(−1)mn+k = (−1)n. Hence, we also need m odd and k even. Using Lt = Ft+1 + Ft−1, we are
able to simplify the value of y. We obtain an infinite set of pairs of solutions

(x, y) = (Fmn+k, Fmn+k−1), (Fmn+k,−Fmn+k+1), m odd and k even.

A closing remark: the automorphism (x, y) 7→ (2x + y, x + y) produces additional solutions,
which in our case have the same form.

Editor’s Note: A number of solvers proposed, for example, (x, y) = (Fn, Fn−1) as a solution.
However, because n is fixed, this in effect provides only one solution. Davlianidze remarked
that 5x2 ± 4 is a perfect square if and only if x is a Fibonacci number [1]. It is easy to verify
that the generalized Fibonacci numbers defined by Gn = Gn−1 + Gn−2 also satisfy (1), it
follows that, as the proposer noted, we can replace Ft with Gt in the solution.
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Reference

[1] I. Gessel, Solution to Problem H-187, The Fibonacci Quarterly, 10.4 (1972), 417–419.

Also solved by Michel Bataille, Brian D. Beasley, Brian Bradie, Pridon
Davlianidze, G. C. Greubel, Ángel Plaza, Raphael Schumacher (student), David
Terr, and the proposer.

Make It Telescope

B-1257 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.
(Vol. 57.4, November 2019)

Find closed form expressions for the alternating sums

n∑
k=0

(−1)kF3kF2·3k and
n∑

k=0

(−1)kF3kL2·3k .

Solution by Dmitry Fleischman, Santa Monica, CA.

Because αβ = −1 and (−1)3
k

= −1, we deduce from the Binet’s formula that

F3kF2·3k =

(
α3k − β3k

)(
α2·3k − β2·3k

)
5

=
α3k + β3

k
+ α3k+1

+ β3
k+1

5
=

1

5

(
L3k + L3k+1

)
.

Therefore,

n∑
k=0

(−1)kF3kF2·3k =
1

5

[
L1 + L3 − L3 − L9 + L9 + L27 − · · ·+ (−1)n

(
L3n + L3n+1

)]
=

1

5

[
1 + (−1)nL3n+1

]
.

Similarly, from

F3kL2·3k =

(
α3k − β3k

)(
α2·3k + β2·3

k)
√

5
=
α3k − β3k + α3k+1 − β3k+1

√
5

= F3k + F3k+1 ,

we gather that
n∑

k=0

(−1)kF3kL2·3k = 1 + (−1)nF3n+1 .

Editor’s Note: Edwards and Weiner (independently) used induction to derive the different
but equivalent closed forms (−1)nF 3n+1−1

2

F 3n+1+1
2

and (−1)nF 3n+1−1
2

L 3n+1+1
2

, respectively, for

the two sums.

Also solved by Michel Bataille, Brian Bradie, Alejandro Cardona Castrillón (stu-
dent), Steve Edwards, I. V. Fedak, G. C. Greubel, Hideyuki Ohtsuka, Raphael
Schumacher (student), Albert Stadler, Dan Weiner, and the proposer.
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Another Trigonometric Inequality

B-1258 Proposed by D. M. Bătineţu-Giurgiu, Mateo Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.
(Vol. 57.4, November 2019)

Prove that

(i) sin
(
F2n+3) + sin

(
Fn+1Fn

)
+ cos

(
Fn+3Fn+2

)
≤ 3

2

(ii) sin
(
FmLn) + sin

(
FnLm

)
+ cos

(
2Fm+n

)
≤ 3

2

Solution by Daniel Văcaru, Piteşti, Romania.

We first prove a lemma: for A+B + C = π, we have

cosA+ cosB + cosC ≤ 3

2
.

To prove the lemma, it suffices to prove that

cosA+ cosB + cosC − 1 = 2 cos
A+B

2
sin

A−B
2
− 2 sin2 C

2

= 2 sin
C

2
sin

A−B
2
− 2 sin2 C

2

≤ 1

2
.

Because 4 sin2 A−B
2 − 4 ≤ 0, we note that

−2t2 + 2t sin
A−B

2
− 1

2
≤ 0

for all real numbers t. The lemma follows by setting t = sin C
2 .

From the shifting property Fs+t = FsFt+1 + Fs−1Ft, we obtain

Fn+3Fn+2 − Fn+1Fn = (Fn+2 + Fn+1)Fn+2 − Fn+1(Fn+2 − Fn+1)

= F 2
n+2 + F 2

n+1

= F2n+3.

Therefore, (π
2
− F2n+3

)
+
(π

2
− Fn+1Fn

)
+ Fn+3Fn+2 = π.

Using the addition formula Fm+n = 1
2 (FmLn + FnLm), we obtain(π

2
− FmLn

)
+
(π

2
− FnLm

)
+ 2Fm+n = π.

The lemma immediately yields (i) and (ii).

Editor’s Note: This problem is similar to Problem B-1253.

Also solved by Michel Baitaille, Brian Bradie, I. V. Fedak, Dmitry Fleischman,
Hideyuki Ohtsuka, Albert Stadler, and the proposer.
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Jensen’s Inequality on a Convex Function

B-1259 Proposed by Ángel Plaza and Sergio Falcón, Universidad de Las Palmas
de Gran Canaria, Spain.
(Vol. 57.4, November 2019)

Let k be a positive integer. The k-Fibonacci numbers are defined by the recurrence relation
Fk,n+1 = kFk,n + Fk,n−1, with initial values Fk,0 = 0 and Fk,1 = 1. Prove that

(i)
n∑

i=1

F 2
k,i√

Fk,i + 1
≥

(Fk,n + Fk,n+1 − 1)2

k
√
kn(Fk,n + Fk,n+1 − 1 + kn)

(ii)
n∑

i=1

F 4
k,i√

F 2
k,i + 1

≥
F 2
k,nF

2
k,n+1

k
√
kn(Fk,nFk,n+1 + kn)

Solution by Albert Stadler, Herrliberg, Switzerland.

We note that the function f(x) = x2
√
x+1

is convex over R+, because

f ′′(x) =
3x2 + 8x+ 8

4(x+ 1)5/2
> 0.

Hence, by Jensen’s inequality,

n∑
i=1

F 2
k,i√

Fk,i + 1
≥

n
(
1
n

∑n
i=1 Fk,i

)2√
1
n

∑n
i=1 Fk,i + 1

,

and
n∑

i=1

F 4
k,i√

F 2
k,i + 1

≥
n
(
1
n

∑n
i=1 F

2
k,i

)2√
1
n

∑n
i=1 F

2
k,i + 1

.

It remains to prove that

S :=
n∑

i=1

Fk,i =
1

k

(
Fk,n+1 + Fk,n − 1

)
,

and

T :=
n∑

i=1

F 2
k,i =

1

k
Fk,nFk,n+1.

To complete the proof, note that

0 =
n∑

i=1

(
Fk,i+1 − kFk,i − Fk,i−1

)
=
(
S + Fk,n+1 − 1

)
− kS −

(
S − Fk,n

)
,

and

0 =

n∑
i=0

Fk,i

(
Fk,i+1 − kFk,i − Fk,i−1

)
= Fk,nFk,n+1 − kT.

Also solved by Michel Bataille, Brian Bradie, I. V. Fedak, Dmitry Fleischman,
G. C. Greubel, and the proposer.

NOVEMBER 2020 373



THE FIBONACCI QUARTERLY

From Floor to Fibonacci Number

B-1260 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 57.4, November 2019)

For any positive integer n, find a closed form expression for the sum
n∑

k=1

⌊
Fk

αFk − Fk+1

⌋
.

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.

Starting from the Binet form for the Fibonacci numbers,

αFk − Fk+1 =
αk+1 + βk−1√

5
− αk+1 − βk+1

√
5

=
βk−1(−αβ + β2)√

5
= −βk.

Thus,
Fk

αFk − Fk+1
=
αk − βk

−
√

5βk
=

(−1)k+1α2k + 1√
5

.

Now, for k odd,

F2k =
α2k − β2k√

5
<
α2k + 1√

5
<
α2k +

√
5− β2k√
5

= F2k + 1,

while for k even,

−F2k =
−α2k + β2k√

5
<
−α2k + 1√

5
<
−α2k +

√
5 + β2k√

5
= −F2k + 1;

therefore, ⌊
Fk

αFk − Fk+1

⌋
= (−1)k+1F2k.

Using the double argument formula F2n = FnLn and the conjugation relation Ln = Fn−1 +
Fn+1,

F2k = FkLk = Fk(Fk−1 + Fk+1) = Fk−1Fk + FkFk+1.

Finally,
n∑

k=1

⌊
Fk

αFk − Fk+1

⌋
=

n∑
k=1

(−1)k+1(Fk−1Fk + FkFk+1) = (−1)n+1FnFn+1.

Also solved by Michel Bataille, I. V. Fedak, Dmitry Fleischman, Robert Frontczak,
Ángel Plaza, Albert Stadler, David Terr, and the proposer.
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