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BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α =
(
1 +

√
5
)
/2, β =

(
1−

√
5
)
/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1313 (Corrected) Proposed by Daniel Văcaru, Economical College Maria
Teiuleanu, Piteşti, Romania, and Mihály Bencze, Aprily Lajos, Braşov,
Romania.

For a ≤ −1, show that
n∑

k=1

Fk(Fn+2 − Fk − 1)a ≥
(
n− 1

n

)a

(Fn+2 − 1)a+1,

n∑
k=1

F 2
k (FnFn+1 − F 2

k )
a ≥

(
n− 1

n

)a

(FnFn+1)
a+1.

B-1316 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that
∞∑
n=0

tanh−1 1

L2·3n
=

1

4
ln 5.
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B-1317 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National
University, Ivano-Frankivsk, Ukraine.

For every integer n, find the real roots of the equation

x4 − 2F 2
n+1x

2 − 4Fn+1F
2
n−1x+ F 4

n+1 − F 4
n−1 = 0.

B-1318 Proposed by Kenny B. Davenport, Dallas, PA.

Prove that
n∑

k=1

(−1)kFk−1FkFk+1 =
(−1)n

12

(
−4F 3

n − F 3
n+1 + 2F 3

n+2 + 4F 3
n+3 − F 3

n+4

)
− 1

2
.

B-1319 Proposed by Toyesh Prakash Sharma (student), St. C. F. Andrews
School, Agra, India.

Show that, for n ≥ 4,

F
1

Fn
n L

1
Ln
n ≥

(
F 2
n+1

) 1
Fn+1 .

B-1320 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that
∞∑
n=1

4

(FnFn+3)2
=

∞∑
n=1

1

(FnFn+2)2
+

1

4
.

SOLUTIONS

An Infinite Product with Subscripts That Are Multiples of Powers of Two

B-1296 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 59.4, November 2021)

For integers s > r ≥ 0, evaluate
∞∏
n=1

(
1 +

L2nr

L2ns

)
.

Solution by Michel Bataille, Rouen, France.

Let P (r, s) denote the product to be evaluated. We claim that P (r, s) =

√
5F2s

L2s − L2r
. For

any positive integer N , let

PN (r, s) =

N∏
n=1

(
1 +

L2nr

L2ns

)
=

∏N
n=1(L2ns + L2nr)∏N

n=1 L2ns

.

We first prove that
N∏

n=1

L2ns =
F2N+1s

F2s
(1)
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The proof is by induction. Because of the general formula FmLm = F2m, we have L2s = F4s
F2s

and (1) holds for N = 1. Assuming that (1) holds for some integer N ≥ 1, we obtain

N+1∏
n=1

L2ns =

(
F2N+1s

F2s

)
· L2N+1s =

F2·2N+1s

F2s
=

F2N+2s

F2s
.

This completes the inductive step and the proof of identity (1).
For integers m and p, it is easy to derive from the Binet formulas that

Lm−p · Lm+p = L2m + (−1)m−pL2p.

We deduce that, if n > 1,

L2n−1(s−r) · L2n−1(s+r) = L2ns + L2nr,

and it follows that, for N ≥ 2,

N∏
n=1

(L2ns + L2nr) = (L2s + L2r)

(
N∏

n=2

L2n−1(s−r)

)(
N∏

n=2

L2n−1(s+r)

)

= (L2s + L2r)
F2N (s−r)F2N (s+r)

F2(s−r)F2(s+r)
.

This result and (1) lead to

PN (r, s) =
F2s(L2s + L2r)

F2(s−r)F2(s+r)
·
F2N (s−r)F2N (s+r)

F2N+1s

.

Using Binet’s formulas, we readily obtain

5F2(s−r)F2(s+r) = L4s − L4r = (L2s + L2r)(L2s − L2r).

In addition, since Fm ∼ αm
√
5
as m → ∞, we have lim

N→∞

F
2N (s−r)

F
2N (s+r)

F
2N+1s

= 1√
5
. Finally,

P (r, s) = lim
N→∞

PN (r, s) =
5F2s

L2s − L2r
· 1√

5
=

√
5F2s

L2s − L2r
,

as claimed.

Also solved by Luis Gerardo Hernández Chávez (undergraduate), Steve Edwards,

Dmitry Fleischman, Robet Frontczak, Ángel Plaza, Raphael Schumacher (gradu-
ate student), Albert Stadler, David Terr, Andrés Ventas, and the proposer.

Two Special Cases of a More General Inequality

B-1297 Proposed by D. M. Bătineţu-Giurgui, Matei Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.
(Vol. 59.4, November 2021)

For integers m > 1 and n ≥ 1, prove that

(A)

n∑
k=1

(1 + Fk)
2(m+1) ≥ (m+ 1)2(m+1)

m2m
FnFn+1

(B)
n∑

k=1

(1 + Lk)
2(m+1) ≥ (m+ 1)2(m+1)

m2m

(
LnLn+1 − 2

)
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Solution 1 by Hideyuki Ohtsuka, Saitama, Japan.

The inequality holds for any real number m ≥ 1. Let m ≥ 1. For x > 0, define f(x) =
(x+1)m+1

xm . Then, we have f ′(x) = (x+1)m(x−m)
xm+1 . Since f ′(x) < 0 for 0 < x < m, f ′(x) > 0 for

x > m, and f ′(m) = 0, we see that

f(x) =
(x+ 1)m+1

xm
≥ f(m) =

(m+ 1)m+1

mm
.

From the above inequality, we have

(1 + x)2(m+1) ≥ (m+ 1)2(m+1)

m2m
x2m ≥ (m+ 1)2(m+1)

m2m
x2.

Therefore, we obtain

n∑
k=1

(1 + Fk)
2(m+1) ≥ (m+ 1)2(m+1)

m2m

n∑
k=1

F 2
k =

(m+ 1)2(m+1)

m2m
FnFn+1,

and
n∑

k=1

(1 + Lk)
2(m+1) ≥ (m+ 1)2(m+1)

m2m

n∑
k=1

L2
k =

(m+ 1)2(m+1)

m2m
(LnLn+1 − 2).

Solution 2 by Brian Bradie, Christopher Newport University, Newport News, VA.

Starting with

m(1 + Fk)

m+ 1
=

m︷ ︸︸ ︷
1 + 1 + · · ·+ 1+mFk

m+ 1
≥ m+1

√
mFk,

which follows from the AM-GM inequality, we obtain

n∑
k=1

(
m(1 + Fk)

m+ 1

)2(m+1)

≥
n∑

k=1

m2F 2
k = m2FnFn+1.

Multiplying both sides by

(
m+ 1

m

)2(m+1)

yields the desired inequality. The proof of (B) uses

a similar argument.

Editor’s Notes: It is clear from the proofs, as Plaza also observed, that the inequality holds
for any positive real numbers xk:

n∑
k=1

(1 + xk)
2(m+1) ≥ (m+ 1)2(m+1)

m2m

n∑
k=1

x2k.

Also solved by Michel Bataille, Dmitry Fleischman, Ángel Plaza, Albert Stadler,
Andrés Ventas, Dan Weiner, and the proposer.
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Write It As a Telescopic Sum

B-1298 Proposed by Diego Rattaggi, Realgymnasium Rämibühl, Zürich,
Switzerland.
(Vol. 59.4, November 2021)

For any positive integer k, prove that
∞∑
n=0

1

F 2
2kn+k+1 + F 2

k

=
1

αF2k
.

Solution by Raphael Schumacher (graduate student, teaching diploma mathemat-
ics), ETH Zurich, Switzerland.

We have by using Catalan’s identity F 2
a − (−1)a+bF 2

b = Fa+bFa−b and d’Ocagne’s identity

FcFd+1 − FdFc+1 = (−1)dFc−d that, for all integers n ≥ 0 and k ≥ 1,

1

F 2
2kn+k+1 + F 2

k

=
F2k

F2kF2kn+2k+1F2kn+1

=
F2kn+2kF2kn+1 − F2knF2kn+2k+1

F2kF2kn+2k+1F2kn+1

=
F2kn+2k

F2kF2kn+2k+1
− F2kn

F2kF2kn+1
.

By telescoping, we deduce that
m∑

n=0

1

F 2
2kn+k+1 + F 2

k

=
m∑

n=0

(
F2kn+2k

F2kF2kn+2k+1
− F2kn

F2kF2kn+1

)
=

F2km+2k

F2kF2km+2k+1
,

which implies that
∞∑
n=0

1

F 2
2kn+k+1 + F 2

k

= lim
m→∞

(
F2km+2k

F2kF2km+2k+1

)
=

1

αF2k
,

because lim
n→∞

(
Fn

Fn+1

)
=

1

α
.

Editor’s Notes: Frontczak obtained the Lucas analog
∞∑
n=0

1

L2
2kn+k+1 − 5F 2

k

=
L2k−1 + α−2k

5F 2
2k

, k ≥ 1.

Ventas remarked that a generalization can be found in [1].

References

[1] B. S. Popov, Summation of reciprocal series of numerical functions of second order, The Fibonacci Quarterly,
24.1 (1986), 17–21.

Also solved by Thomas Achammer, Michel Bataille, Brian Bradie, Luis Gerardo
Hernández Chávez (undergraduate), Steve Edwards, Dmitry Fleischman, Robert

Frontczak, G. C. Greubel, Hideyuki Ohtsuka, Ángel Plaza, Jason L. Smith, Albert
Stadler, Andrés Ventas, and the proposer.
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Factorial and Factorial

B-1299 Proposed by Toyesh Prakash Sharma (high school student), St. C. F. An-
drews School, Agra, India.
(Vol. 59.4, November 2021)

Let n be a positive even integer. Prove that

exp

(
n∑

k=1

Fk−1Fk+1

)
>

n∏
k=1

[
(Fk)! (Fk + 1)!

]
.

Solution by Michael R. Bacon and Charles K. Cook (jointly), Sumter, SC.

We shall prove the broader results that

Fn−1Fn+1 > ln
[
(Fn)! (Fn + 1)!

]
, for any integer n ≥ 2,

Ln−1Ln+1 > ln
[
(Ln)! (Ln + 1)!

]
, for n = 1 and any integer n ≥ 3.

Note that the result fails for the Fibonacci numbers when n = 1 and fails for the Lucas
numbers when n = 2. These two general results imply that

exp

(
n∑

k=2

Fk−1Fk+1

)
>

n∏
k=2

[(Fk)! (Fk + 1)!] , for any integer n ≥ 2,

exp

(
n∑

k=3

Lk−1Lk+1

)
>

n∏
k=3

[(Lk)! (Lk + 1)!] , for any integer n ≥ 3.

They, with the numeric values for the special cases of k = 2, 3, imply that

exp

(
n∑

k=2

Fk−1Fk+1

)
>

n∏
k=1

[(Fk)! (Fk + 1)!] , for any integer n ≥ 2,

exp

(
n∑

k=3

Lk−1Lk+1

)
>

n∏
k=1

[(Lk)! (Lk + 1)!] , for any integer n ≥ 1.

We now prove the broader results stated in the beginning of the solution. The general proof
uses the inequalities

Fn−1Fn+1 = F 2
n + (−1)n ≥ F 2

n − 1,

Ln−1Ln+1 = L2
n − 5 (−1)n ≥ L2

n − 5,

and an upper bound for Stirling’s approximation of ln(k!) that can be found in [1] or [2]:

1

2
ln(2π) +

1

2
ln k + k ln k − k +

1

12k
> ln(k!).

Since ln [k! (k + 1)!] = 2 ln (k!) + ln(k + 1), we have

ln(2π) + ln k + 2k ln k − 2k +
1

6k
+ ln(k + 1) > ln [(k! (k + 1)!] .

Define, for x ≥ 1,

f(x) = x2 − 1− ln(2π)− ln(x)− 2x ln(x) + 2x− 1

6x
− ln(x+ 1),

g(x) = x2 − 5− ln(2π)− ln(x)− 2x ln(x) + 2x− 1

6x
− ln(x+ 1).
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We find

f ′(x) = g′(x) = 2(x− ln(x))−
(
1

x
+

1

x+ 1

)
+

1

6x2
.

When x ≥ 1, the smallest value of x − ln(x) is 1 − ln(1) = 1, the largest value of 1
x + 1

x+1 is
1
1 +

1
2 = 3

2 , and the smallest value of 1
6x2 is 1

6 . So g′(x) = f ′(x) ≥ 2 · 1− 3
2 +

1
6 > 0. Both f and

g are strictly increasing functions when x ≥ 1. The smallest integer value for which f(x) > 0
is x = 2; so when x ≥ 2,

x2 − 1 > ln(2π) + ln(x) + 2x ln(x)− 2x+
1

6x
+ ln(x+ 1).

The smallest value of x for which g(x) > 0 is x = 4; hence when x ≥ 4,

x2 − 5 > ln(2π) + ln(x) + 2x ln(x)− 2x+
1

6x
+ ln(x+ 1).

We conclude that the smallest Fibonacci and Lucas numbers for which the inequality holds
are F3 = 2 and L3 = 4, respectively. Therefore, for n ≥ 3,

Fn−1Fn+1 ≥ F 2
n − 1

> ln(2π) + ln(Fn) + 2Fn ln(Fn)− 2Fn +
1

6Fn
+ ln(Fn + 1)

> 2 ln [(Fn)!] + ln(Fn + 1)

= ln [(Fn)!(Fn + 1)!] ,

and similarly
Ln−1Ln+1 ≥ L2

n − 5 > ln [(Ln)!(Ln + 1)!] .

This establishes the boarder results and thus completes the solution.

References

[1] H. Robbins, A remark of Stirling’s formula, Amer. Math. Monthly, 62 (1955), 26–29.
[2] E. W. Weisstein, Stirling’s Approximation. MathWorld — A Wolfram Web Resource, https://mathworld.

wolfram.com/StirlingsApproximation.html

Also solved by Thomas Achammer, Michel Bataille, Dmitry Fleischman, Luke
Paluso (graduate student), Albert Stadler, Andrés Bentas, and the proposer.

Millin Series

B-1300 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.
(Vol. 59.4, November 2021)

Let the sequence {an}n≥0 be defined by a0 = 1, a1 = 3, and an+2 = an+1

(
5a2n+2

)
. Evaluate

∞∑
n=0

1

an
.

Composite Solution by Brian Bradie, Christopher Newport University, Newport
News, VA, and Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Note that
a0 = 1 = F2, and a1 = 3 = F4.
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Assume ak = F2k+1 for k = 0, 1, . . . , n for some positive integer n. Then,

an+1 = an
(
5a2n−1 + 2

)
= F2n+1

(
5F 2

2n + 2
)
= F2n+1L2n+1 = F2n+2 .

Thus, an = F2n+1 for all integers n ≥ 0 by induction. Then,
∞∑
n=0

1

an
=

∞∑
n=1

1

F2n
.

Since
1

F2n
=

√
5

α2n − β2n
=

√
5α2n

α2n+1 − 1
=

√
5

(
1

α2n − 1
− 1

α2n+1 − 1

)
,

the proposed sum telescopes. We find
∞∑
n

1

an
=

√
5 lim
n→∞

(
1

α2 − 1
− 1

α2n+1 − 1

)
=

√
5

α2 − 1
=

√
5

α
.

The series
∑∞

n=0 1/F2n is known as the Millin series, whose value is 1
2

(
7−

√
5
)
[1]. Evalu-

ation of this series is the subject of a problem proposed by Millin [3], with a solution provided
by Shannon [4]. Hoggart and Bicknell [2] described 10 additional techniques for determining
the value of this series.

References

[1] I. J. Good, A reciprocal series of Fibonacci numbers, The Fibonacci Quarterly, 12.4 (1974), 346.
[2] V. E. Hoggart and M. Bicknell, A primer for the Fibonacci numbers, Part XV: Variations on summing a

series of reciprocals of Fibonacci numbers, The Fibonacci Quarterly, 14.3 (1976), 272–278.
[3] D. A. Millin, Problem H-237, The Fibonacci Quarterly, 12.3 (1974), 309.
[4] A. G. Shannon, Solution to Problem H-237, The Fibonacci Quarterly, 14.2 (1976), 186–187.

Also solved by Thomas Achammer, Michel Bataille, Luis Gerardo Hernández
Chávez (undergraduate), Charles K. Cook and Michael R. Bacon (jointly), Charles
K. Cook (alternate solution), Steve Edwards, Dmitry Fleischman, G. C. Greubel,
Hideyuki Ohtsuka, Luke Paluso (graduate student), Raphael Schumacher (grad-
uate student), Albert Stadler, Seán M. Stewart, David Terr, Andrés Ventas, and
the proposer.
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