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Please submit solutions and problem proposals to Dr. Harris Kwong, Department of Mathe-
matical Sciences, SUNY Fredonia, Fredonia, NY, 14063, or by email at kwong@fredonia.edu.
If you wish to have receipt of your submission acknowledged by mail, please include a self-
addressed, stamped envelope.

Each problem or solution should be typed on separate sheets. Solutions to problems in this
issue must be received by August 15, 2021. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results.”

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-51 Proposed by Douglas Lind, Falls Church, VA.
(Vol. 2.3, October 1964)

Let φ(n) be the Euler totient and let φk(n) be defined by φ1(n) = φ(n), φk+1(n) = φ(φk(n)).
Prove that φn(Fn) = 1, where Fn is the nth Fibonacci number.

Editor’s Note: This is the last unsolved problem from the old issues. No solutions have
appeared, so we feature the problem again, and invite the readers to solve it.

B-1281 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National Uni-
versity, Ivano-Frankivsk, Ukraine.

For all positive integers n and m, prove that

L1 + n

√

√

√

√

m
∑

k=1

Ln
k ≤ n

√

√

√

√

m
∑

k=1

Fn
k+1 + Fm+1.
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B-1282 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

For any positive integer n, find closed form expressions for the sums
n
∑

k=1

F3kF3k+1, and
n
∑

k=1

F2F3k
F2F3k+1

.

B-1283 Proposed by Michel Bataille, Rouen, France.

For positive integers m, n, evaluate in closed form:
n
∑

j=1

(

2n

n− j

)

Fmn−4j + Fmn+4j

Fmn

.

B-1284 Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria,
Gran Canaria, Spain.

Let (xn)n≥0 be the sequence recurrently defined by xn+1 = xn+xn−1 for n ≥ 1, with initial
conditions x0 ≥ 0 and x1 ≥ 1. For n ≥ 2, prove that

ln

(

1

n− 1

(

x2
x1

+
x3
x2

+ · · ·+ xn
xn−1

))

≥ 2

n− 1

(

x0
x3

+
x1
x4

+ · · ·+ xn−2

xn+1

)

.

B-1285 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Let i =
√
−1. For any integer n ≥ 0, prove that

(i)

n
∑

k=−n

(

2n

n+ k

)

(

e
2kπi
5 + e

4kπi
5

)

= L2n;

(ii)
n
∑

k=−n

(

2n

n+ k

)

(

e
kπi
5 + (−1)ne

3kπi
5

)

=
(
√
5
)n
Ln.

SOLUTIONS

The Third Oldie from the Vault

B-835 Proposed by David M. Bloom, Brooklyn College of CUNY, Brooklyn,
NY.
(Vol. 35.3, August 1997)

In a sequence of coin tosses, a single is a term (H or T) that is not the same as any adjacent
term. For example, in the sequence HHTHHHTH, the singles are the terms in positions 3, 7,
and 8. Let S(n, r) be the number of sequences of n coin tosses that contain exactly r singles.
If n ≥ 0, and p is prime, find the value modulo p of 1

2 S(n + p− 1, p − 1).

Editor’s Note: Albert Stadler kindly remarked that the problem was republished as Problem
B-899 [1], with a solution that appeared in [3]. For a more detailed discussion and related
problems, see [2].
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Also solved by Raphael Schumacher (student), and the proposer.

Powers of Three in the Subscripts

B-1261 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.
(Vol. 58.1, February 2020)

Show that
∞
∏

n=0

L2
3n + 1

L2
3n + 3

=
∞
∏

n=0

5F 2
3n − 3

5F 2
3n − 1

, and determine the exact value of the limit.

Solution by Hideyuki Ohtsuka, Saitama, Japan.

For any integer k, we have

L2
k − (−1)k = 5F 2

k + 3(−1)k =
F3k

Fk

,

because, according to Binet’s formulas, all three expressions are equal to α2k + β2k + (−1)k.
We also have

L2
k − 3(−1)k = 5F 2

k + (−1)k =
L3k

Lk

,

because all three expressions are equal to α2k +β2k − (−1)k. Using these identities, we obtain

m
∏

n=0

L2
3n + 1

L2
3n + 3

=

m
∏

n=0

5F 2
3n − 3

5F 2
3n − 1

=

m
∏

n=0

F3n+1

F3n
· L3n

L3n+1

=
F3m+1

F30
· L30

L3m+1

=
F3m+1

L3m+1

.

Therefore,
∞
∏

n=0

L2
3n + 1

L2
3n + 3

=

∞
∏

n=0

5F 2
3n − 3

5F 2
3n − 1

= lim
m→∞

F3m+1

L3m+1

=
1√
5
.

Editor’s Note: Several solvers used the product formulas to derive the identities L2
3n + 1 =

L2·3n − 1 and L2
3n + 3 = L2·3n + 1, to which they applied the following identities (they can be

found in [1], and can be proved by induction)
∏m

n=0(L2·3n −1) = F3m+1 and
∏m

n=0(L2·3n +1) =
L3m+1 to finish their proofs.

Reference

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 2001.

Also solved by Brian Beasley, Brian Bradie, Charles K. Cook, Dmitry Fleischman,
I. V. Fedak, Raphael Schumacher (student), Jason L. Smith, Albert Stadler, David
Terr, and the proposer.

84 VOLUME 59, NUMBER 1



ELEMENTARY PROBLEMS AND SOLUTIONS

Stirling Approximation for Double Factorials

B-1262 Proposed by D. M. Bătineţu-Giurgiu, Mateo Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.
(Vol. 58.1, February 2020)

Compute

lim
n→∞

(

3n+3
√

(2n+ 1)!!Fn+1 − 3n
√

(2n− 1)!!Fn

)

3
√
n2.

Solution by Dmitry Fleischman, Santa Monica, CA.

Because (2n− 1)!! = (2n)!
2n n! , according to Stirling’s approximation,

(2n − 1)!! =

(

2n
e

)2n√
4πn

[

1 + 1
24n +O

(

1
n2

)]

2n
(

n
e

)n√
2πn

[

1 + 1
12n +O

(

1
n2

)] =
√
2

(

2n

e

)n [

1− 1

24n
+O

(

1

n2

)]

.

Recall that

Fn =
αn
[

1−
(

β
α

)n]

√
5

,

where
∣

∣

β
α

∣

∣ < 0.4, and

[

1−
(

β

α

)n] 1
3n

= 1−
(

β
α

)n

3n
+ o

(

(

β

α

)2n
)

.

For a > 0, we find
(√

a
)

1
3n = e

ln(a)
6n = 1 +

ln(a)

6n
+O

(

1

n2

)

.

Together with
[

1− 1

24n
+O

(

1

n2

)]
1
3n

= 1− 1

72n2
+O

(

1

n3

)

,

we gather that

[

(2n− 1)!!Fn

]
1
3n =

(

2nα

e

)
1
3
[

1 +O

(

1

n

)]

.

Therefore,

lim
n→∞

(

3n+3
√

(2n+ 1)!!Fn+1 − 3n
√

(2n− 1)!!Fn

)

3
√
n2

= lim
n→∞

(

2α

e

)
1
3
(

3
√
n+ 1− 3

√
n
) 3
√
n2

= lim
n→∞

(

2α

e

)
1
3 [(n+ 1)− n]

3
√
n2

3
√

(n+ 1)2 + 3
√
n+ 1 3

√
n+

3
√
n2

=
1

3

(

2α

e

)
1
3

.
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Editor’s Notes: The solutions we received can be divided into two categories, similar to the
solutions to two recent problems [1, 2]. Some used the argument in [3], others used Stirling
approximation for factorials, as in [4].

References

[1] D. M. Bătineţu-Giurgiu and N. Stanciu, Problem B-1229, The Fibonacci Quarterly, 56.2 (2018), 178.
[2] D. M. Bătineţu-Giurgiu, N. Stanciu, and G. Tica, Problem B-1202, The Fibonacci Quarterly, 55.1 (2017),

83.
[3] D. M. Bătineţu-Giurgiu, N. Stanciu and G. Tica, Solution to Problem B-1202, The Fibonacci Quarterly,

56.1 (2018), 84–85.
[4] D. Terr, Solution to Problem B-1229, The Fibonacci Quarterly, 57.2 (2019), 180–181.

Also solved by Brian Bradie, Charles Burnette, I. V. Fedak, G. C. Greubel, Ángel
Plaza, Raphael Schumacher (student), and the proposers.

Pairing Up Fibonacci and Lucas with Pell and Pell-Lucas

B-1263 Proposed by Stanley Rabinowitz, Milford, NH.
(Vol. 58.1, February 2020)

Let Pn denote the nth Pell number. Find a recurrence relation for Xn = Fn + Pn.

Solution 1 by Brian Bradie, Christopher Newport University, Newport News, VA.

Let
Xn = Fk1,n + Fk2,n,

where Fk,n denotes the k-Fibonacci numbers defined as Fk,0 = 0, Fk,1 = 1, and

Fk,n+1 = kFk,n + Fk,n−1, n ≥ 1.

It is a routine exercise to verify that t
1−kt−t2

is the generating function for Fk,n. So, the
generating function for Xn is

X (t) =
∞
∑

n=0

Xnt
n =

t

1− k1 t− t2
+

t

1− k2 t− t2

=
2t− (k1 + k2) t

2 − 2t3

1− (k1 + k2) t+ (k1k2 − 2) t2 + (k1 + k2) t3 + t4
.

Because
[

1 − (k1 + k2) t + (k1k2 − 2) t2 + (k1 + k2) t
3 + t4

]

X (t) is a cubic polynomial, the
coefficient of tn must be zero for n ≥ 4. This leads to the recurrence relation

Xn+1 = (k1 + k2)Xn − (k1k2 − 2)Xn−1 − (k1 + k2)Xn−2 −Xn−3, n ≥ 3.

Letting k1 = 1 and k2 = 2 yields Fk1,n = Fn and Fk2,n = Pn, and Xn = Fn + Pn satisfies the
recurrence relation

Xn+1 = 3Xn − 3Xn−2 −Xn−3, n ≥ 3.

Notice that the same recurrence relation also applies to Xn = Ln + Pn, Xn = Fn + Qn, and
Xn = Ln +Qn, where Qn denotes the Pell-Lucas number.

Solution 2 by Jason L. Smith, Richland Community College, Decatur, IL.

Define the operator D on a sequence
{

an
}

such that Dan = an−1. From this definition,

we can see that Dkan = an−k. It can also be shown that polynomials in D having constant
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coefficients commute; that is, p(D)q(D)an = q(D)p(D)an for any polynomials p and q whose
coefficients do not depend on n. Using this notation, we can express the Fibonacci and Pell
recursions as

(

1 − D −D2
)

Fn = 0 and
(

1 − 2D −D2
)

Pn = 0, respectively. Let us say that
each expression in D “annihilates” its respective sequence. From this, it can be seen that the
operator

(

1−D −D2
)(

1− 2D −D2
)

= 1− 3D + 3D3 +D4

annihilates Xn = Fn+Pn. From this, we recover the recursionXn−3Xn−1+3Xn−3+Xn−4 = 0,
or Xn = 3Xn−1 − 3Xn−3 −Xn−4.

Also solved by Brian Beasley, Charles Burnette, Charles K. Cook, Kenny B.
Davenport, Pridon Davlianidze, Tom Edgar, I. V. Fedak, Dmitry Fleischman,
G. C. Greubel, Kabil Kumar Gurjar, Russell Jay Hendel, Carl Libis, Hideyuki
Ohtsuka, Ángel Plaza, Raphael Schumacher (student), Jason L. Smith (second
solution), Albert Stadler, and the proposer.

It’s All About Catalan

B-1264 Pridon Davlianidze, Tbilisi, Republic of Georgia.
(Vol. 58.1, February 2020)

Prove that

(A)
∞
∏

n=2

(

1 +
1

F 2
2n−1

)

=
α2

2

(B)

∞
∏

n=2

(

1− 1

F 2
2n

)

=
α2

3

(C)
∞
∏

n=2

(

1− 1

F 2
2n−1

)(

1 +
1

F 2
2n

)

=
α

2

Solution by Anlly Daniela Giraldo Melo and Alejandro Cardona Castrillón (both
students) (jointly), Universidad de Antioquia, Medelĺın Antioquia, Colombia.

Using the Catalan’s formula Fm+kFm−k − F 2
m = (−1)m+k+1F 2

k , for part (A), we obtain

∞
∏

n=2

(

1 +
1

F 2
2n−1

)

=

∞
∏

n=2

F 2
2n−1 + 1

F 2
2n−1

=

∞
∏

n=2

F2n+1F2n−3

F 2
2n−1

.

Because limm→∞
Fm+j

Fm
= αj , we find

∞
∏

n=2

(

1 +
1

F 2
2n−1

)

= lim
m→∞

m
∏

n=2

F2n+1F2n−3

F 2
2n−1

= lim
m→∞

F1F2m+1

F3F2m−1
=

α2

2
.

For part (B), we observe that (again, using Catalan’s formula)

∞
∏

n=2

(

1− 1

F 2
2n

)

=

∞
∏

n=2

F 2
2n − 1

F 2
2n

=

∞
∏

n=2

F2n+2F2n−2

F 2
2n

= lim
m→∞

m
∏

n=2

F2n+2F2n−2

F 2
2n

= lim
m→∞

F2F2m+2

F4F2m
=

α2

3
.
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For part (C), we obtain
∞
∏

n=2

(

1− 1

F 2
2n−1

)(

1 +
1

F 2
2n

)

=
∞
∏

n=2

(

F 2
2n−1 − 1

F 2
2n−1

· F
2
2n + 1

F 2
2n

)

=

∞
∏

n=2

(

F2n−2F2n

F 2
2n−1

· F2n−1F2n+1

F 2
2n

)

= lim
m→∞

m
∏

n=2

F2n−2F2n+1

F2n−1F2n
= lim

m→∞

F2F2m+1

F3F2m
=

α

2
.

Also solved by Adilhan Ataoğlu, Brian Beasley, Brian Bradie, Charles K. Cook,
Kenny B. Davenport, Steve Edwards, I. V. Fedak, Dmitry Fleischman, Robert
Frontczak, G. C. Greubel, Kapil Kumar Gurjar, Russell Jay Hendel, Thomas
Koshy, Hideyuki Ohtsuka, Ángel Plaza, Raphael Schumacher (student), Jason L.
Smith, Albert Stadler, David Terr, Mustafa Türe (student), and the proposer.

Fun with Powers of Two

B-1265 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 58.1, February 2020)

For any integer n ≥ 1, find a closed form expression for the sum

n
∑

k=1

k
∏

j=1

(

L2j+1 + L2j
)

.

Solution by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National University,
Ivano-Frankivsk, Ukraine.

To begin, we will prove by induction that

k
∏

j=1

(

L2j+1 + L2j
)

=
L2k+2 − L2k+1

4
.

The identity holds when k = 1, because L22 +L21 = 7+3 = 47−7
4 =

L23−L22

4 . Assume it holds

when k = m, that is,
∏m

j=1

(

L2j+1 + L2j
)

=
L2m+2−L2m+1

4 for some integer m ≥ 1. Then,

m+1
∏

j=1

(

L2j+1 + L2j
)

=
L2m+2 − L2m+1

4
·
(

L2m+2 + F2m+1

)

=
L2
2m+2 − L2

2m+1

4

=

(

L2m+3 + 2
)

−
(

L2m+2 + 2
)

4
=

L2m+3 − L2m+2

4
.

Thus, the identity holds for all positive integers k. Therefore,

n
∑

k=1

k
∏

j=1

(

L2j+1 + L2j
)

=
n
∑

k=1

L2k+2 − L2k+1

4
=

L2n+3 − L22

4
=

L2n+3 − 7

4
.

Also solved by Brian Bradie, Robert Frontczak, G. C. Greubel, Raphael Schu-
macher (student), Jason L. Smith, Albert Stadler, David Terr, and the proposer.

Acknowledgment: Raphael Schumacher (student) also solved Problem B-1260, his name
was inadvertently omitted by the editor.
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