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Please submit solutions and problem proposals to Dr. Harris Kwong, Department of Mathe-
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If you wish to have receipt of your submission acknowledged by mail, please include a self-
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Each problem or solution should be typed on separate sheets. Solutions to problems in this
issue must be received by November 15, 2021. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results.”

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√

5)/2, β = (1−
√

5)/2, Fn = (αn − βn)/
√

5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1286 Proposed by Michel Bataille, Rouen, France.

Let n be a positive integer. Prove that
n∑
j=0

(
2n+ 1

2j + 1

)
1

5j

n−1∑
j=0

(
2n

2j + 1

)
1

5j

=
2L2n+1

5F2n
.

B-1287 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Define the sequence {Gn} by Gn+2 = Gn+1 +Gn for n ≥ 1, with arbitrary G1 and G2. For
integers n ≥ 1 and r ≥ 2, find a closed form expression for the sum

n∑
k=1

Grk

F kr−1
.
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B-1288 Proposed by Peter Ferraro, Roselle Park, NJ.

Prove that, for n ≥ 4, if Fn+1Fn is not a prefect square, then⌊√
Fn+1Fn

⌋
=
⌊√

Ln−1Ln−2 +
√
Fn−3Fn−4

⌋
.

B-1289 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National Uni-
versity, Ivano-Frankivsk, Ukraine.

Let x, y, and z be positive integers that satisfy the equation F3n+2 x + F3n y = F3n+1 z.

For every positive integer n, prove that

3n∑
k=1

F 2
k and 2

3n+1∑
k=1

F 2
k are divisors of the product

(x+ y)(y + z)(z − x).

B-1290 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.

Show that
n∑
k=1

(
5F 4

2k + 3F 2
2k

)
=
(
F2n+1 − 1

)(
F2n+1 + 1

)
.

SOLUTIONS

The Fourth Oldie from the Vault

B-416 Proposed by Gene Jakubowski and V. E. Hoggatt Jr., San Jose State
University, San Jose, CA.
(Vol. 17.4, December 1979)

Let Fn be defined for all integers (positive, negative, and zero) by F0 = 0, F1 = 1, Fn+2 =
Fn+1 + Fn, and hence

Fn = Fn+2 − Fn+1.

Prove that every positive integer m has at least one representation of the form

m =

N∑
j=−N

αjFj ,

with each αj in {0, 1} and αj = 0 when j is an integral multiple of 3.

Solution by Bumkyu Cho, Durkbin Cho, Yung Duk Cho, Ho Park, and Joonsang
Park, Dongguk University, Seoul, South Korea.

According to Zeckendorf’s Theorem, m can be expressed as

m = Fi1 + Fi2 + · · ·+ Fir ,

in which
2 ≤ i1 < i2 < · · · < ir, where ip+1 − ip ≥ 2 for p = 1, 2, . . . , r − 1. (1)

Starting with I0 = {i1, i2, . . . , ir}, we want to transform it into another index set I1 =
{i′1, i′2, . . . , i′s} ⊂ Z such that
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(i) m =
∑

i∈I1 Fi,

(ii) if i ∈ I1 is odd, then i < 0, and

(iii) 6t+ 3 /∈ I1 for any integer t.

If 6t± 1 ∈ I0 for some integer t ≥ 0, using F−k = (−1)k+1Fk, we can replace 6t± 1 in I0 with
−(6t± 1). When 6t+ 3 ∈ I0 for some integer t ≥ 0, we have

F6t+3 = −F6t+2 + F6t+4 = F−(6t+2) + F6t+4,

Replace 6t + 3 in I0 with −(6t + 2) and 6t + 4, where 6t + 4 /∈ I0 because of (1). Thus we
obtain the desired index set I1. Note that we may assume that if 2k ∈ I1 for some integer
k 6= 0, then −2k /∈ I1 because F2k + F−2k = 0 implies that we can remove both 2k and −2k
from I1.

Now, if 6t /∈ I1 for any positive integer t, we are done. Otherwise, let n be the largest
positive integer such that 6n ∈ I1. Let l, where 0 ≤ l < 3n, be the non-negative integer such
that 6n − 2, 6n − 4, . . . , 6n − 2l ∈ I1, but 6n − 2l − 2 /∈ I1. If l = 0, then 6n − 1 /∈ I1 by (ii),
and 6n− 2 /∈ I1 by the choice of l. Thus, using F6n = F6n−1 + F6n−2, we can replace 6n in I1
with 6n− 1 and 6n− 2. If l > 0, the sum of 6n, 6n− 2, . . . , 6n− 2l becomes

l∑
k=0

F6n−2l+2k = −F6n−2l + F6n−2l +
l∑

k=0

F6n−2l+2k

= −F6n−2l + F6n−2l−2 + F6n−2l−1 +
l∑

k=0

F6n−2l+2k

= F−(6n−2l) + F6n−2l−2 + F6n+1.

Here, −(6n− 2l) /∈ I1 because 6n− 2l ∈ I1, 6n− 2l− 2 /∈ I1 by the choice of l, and 6n+ 1 /∈ I1
because of (ii). Hence, we can replace 6n, 6n− 2, . . . , 6n− 2l in I1 with −(6n− 2l), 6n− 2l− 2
and 6n+ 1. It is possible that −(6n− 2l) = −6s for some positive integer s. In this case,

F−6s = F−6s−1 + F−6s−2 = F6s+1 + F−(6s+2),

where 6s+ 1 /∈ I1 by (ii), and −(6s+ 2) /∈ I1 because 6s+ 2 = 6n− 2l + 2 ∈ I1.
By repeating the removal process above (note that if 6n − 2l − 2 = 6s for some positive

integer s during any iteration, it becomes the largest positive multiple of 6 to be removed in
the next iteration), we establish the desired expression for m.

Also solved by Raphael Schumacher (student), Doğa Can Sertbaş, Albert Stadler,
David Terr, and the proposers.

A Nested Radical of Ones

B-1266 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 58.2, May 2020)

For any positive integer n, prove that

F2n

F2n−1
≥

√√√√
1 +

√
1 +

√
1 + · · ·+

√
1 +
√

1 (n square roots).
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Solution by Brian D. Beasley, Presbyterian College, Clinton, SC.

For each positive integer n, we let

an =

√√√√
1 +

√
1 +

√
1 + · · ·+

√
1 +
√

1 (n square roots).

Using the observation that an+1 =
√

1 + an, we use induction on n to prove that F2n/F2n−1 ≥
an. For n = 1, we have F2/F1 = 1 = a1. Next, assume F2n/F2n−1 ≥ an for some positive
integer n. We must show that F2n+2/F2n+1 ≥ an+1, or equivalently that

F 2
2n+2 ≥ F 2

2n+1(1 + an).

Using the induction hypothesis, we establish this result by proving that

F 2
2n+2 ≥ F 2

2n+1

(
1 +

F2n

F2n−1

)
.

This is equivalent to establishing F 2
2n+2F2n−1 ≥ F 2

2n+1(F2n−1 + F2n) = F 3
2n+1. Applying the

identities F2n+2F2n−1 = F2n+1F2n + 1 and F2n+2F2n = F 2
2n+1 − 1, we obtain

F 2
2n+2F2n−1 = F2n+2(F2n+1F2n + 1) = F2n+1(F

2
2n+1 − 1) + F2n+2 = F 3

2n+1 + F2n,

which completes the proof.
We note that α ≥ F2n/F2n−1 ≥ an for each positive integer n, with

lim
n→∞

F2n

F2n−1
= lim

n→∞
an = α.

Also solved by Michel Bataille, Steve Edwards, I. V. Fedak, Dmitry Fleischman,
Kapil Kumar Gurjar, Dongsheng Li (student), Luke Paluso (student), Ángel
Plaza, Raphael Schumacher (student), J. N. Senadherra, Albert Stadler, David
Terr, Dan Weiner, and the proposer.

The Zeta Riemann Function and the Cotangent Function

B-1267 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.
(Vol. 58.2, May 2020)

Prove that
∞∑
n=1

ζ(2n)F2n

5n
= −1 +

∞∑
n=1

ζ(2n)L2n

5n
=

π

2
√

5
tan

(
π

2
√

5

)
,

where ζ(s) =
∑∞

k=1
1
ks (s > 1) is the Riemann zeta function.

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.

First,

∞∑
n=1

ζ(2n)x2n =
∞∑
n=1

∞∑
k=1

x2n

k2n
=
∞∑
k=1

∞∑
n=1

(
x2

k2

)n
=

∞∑
k=1

x2

k2 − x2
=

1

2
(1− πx cotπx).
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Next,

∞∑
n=1

ζ(2n)F2n

5n
=

1√
5

[ ∞∑
n=1

ζ(2n)

(
α√
5

)2n

−
∞∑
n=1

ζ(2n)

(
β√
5

)2n
]

=
π

2
√

5

(
β√
5

cot
πβ√

5
− α√

5
cot

πα√
5

)
.

With α− β =
√

5, it follows that β√
5

= α√
5
− 1, and

β√
5

cot
πβ√

5
=

(
α√
5
− 1

)
cot

(
πα√

5
− π

)
=

(
α√
5
− 1

)
cot

πα√
5
.

Hence,
∞∑
n=1

ζ(2n)F2n

5n
= − π

2
√

5
cot

πα√
5

= − π

2
√

5
cot

(
π

2
√

5
+
π

2

)
=

π

2
√

5
tan

(
π

2
√

5

)
.

For the summation involving the Lucas numbers:
∞∑
n=1

ζ(2n)L2n

5n
=

∞∑
n=1

ζ(2n)

(
α√
5

)2n

+
∞∑
n=1

ζ(2n)

(
β√
5

)2n

= 1− π

2
√

5

(
α cot

πα√
5

+ β cot
πβ√

5

)
.

Since

β cot
πβ√

5
=
(
α−
√

5
)

cot
πα√

5
= (1− α) cot

πα√
5
,

we deduce that

−1 +
∞∑
n=1

ζ(2n)L2n

5n
= − π

2
√

5
cot

πα√
5

=
π

2
√

5
tan

(
π

2
√

5

)
.

Editor’s Note: Paluso obtained a generalized result
∞∑
n=1

ζ(2n)G2n

5n
=

1

2
√

5

[
aπ tan

(
π

2
√

5

)
− (a− b)

√
5

]
for the sequence {Gn}n≥1 defined by G1 = a, G2 = b, and Gn = Gn−1 +Gn−2.

Also solved by Michel Bataille, Dmitry Fleischman, Kapil Kumar Gurjar, Luke
Paluso (student), Ángel Plaza, Raphael Schumacher (student), J. N. Senadherra,
Jason L. Smith, Albert Stadler, David Terr, and the proposer.

Prove It in Any Way You Like

B-1268 Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.
(Vol. 58.2, May 2020)

Prove that, for n ≥ 1,

(i) L2n−1 = L2n−3 + 2L2n−5 + · · ·+ (n− 1)L1 + 2n− 1

(ii) L2n = L2n−2 + 2L2n−4 + · · ·+ (n− 1)L2 + n+ 2
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Solution 1 by Michel Bataille, Rouen, France.

Note that (i) and (ii) hold if n = 1 so we may assume that n ≥ 2 in what follows. If m is a
positive integer, then for k = 1, 2, . . . ,m, we have L2k − L2k−2 = L2k−1, hence

L2m − 2 = L2m − L0 =
m∑
k=1

(L2k − L2k−2) = L1 + L3 + · · ·+ L2m−1. (2)

Similarly, if m ≥ 2, then from L2k−1 − L2k−3 = L2k−2 (k = 2, . . . ,m), we obtain

L2m−1 − 1 = L2m−1 − L1 =
m∑
k=2

(L2k−1 − L2k−3) = L2 + L4 + · · ·+ L2m−2. (3)

From (2), we have

n−1∑
m=1

(L2m − 2) = L1 + (L1 + L3) + · · ·+ (L1 + L3 + · · ·+ L2n−5)

+ (L1 + L3 + · · ·+ L2n−3).

Then, using (3),

L2n−1 − 1− 2(n− 1) = (n− 1)L1 + (n− 2)L3 + · · ·+ 2L2n−5 + L2n−3,

and (i) immediately follows. Analogously, it follows from (3) that
n∑

m=2

(L2m−1 − 1) = L2 + (L2 + L4) + · · ·+ (L2 + L4 + · · ·+ L2n−4)

+ (L2 + L4 + · · ·+ L2n−2).

Then, using (2),

L2n − 2− L1 − (n− 1) = (n− 1)L2 + (n− 2)L4 + · · ·+ 2L2n−4 + L2n−2,

and (ii) follows.

Solution 2 by Brian Bradie, Christopher Newport University, Newport News, VA.

We first consider (ii), and rewrite it as

L2n =
n∑
k=0

kL2(n−k) − n+ 2.

Using the generating functions
∞∑
n=0

L2nx
n =

2− 3x

1− 3x+ x2
,

∞∑
n=0

nxn =
x

(1− x)2
,

∞∑
n=1

xn =
1

1− x
,

and applying convolution, we find
∞∑
n=0

(
n∑
k=0

kL2(n−k) − n+ 2

)
xn =

2− 3x

1− 3x+ x2
· x

(1− x)2
− x

(1− x)2
+

2

1− x
.

After simplification, we obtain
∞∑
n=0

(
n∑
k=0

kL2(n−k) − n+ 2

)
xn =

2− 3x

1− 3x+ x2
=
∞∑
n=0

L2nx
n.
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This proves (ii). Now, subtract

L2n−2 = L2n−4 + 2L2n−6 + · · ·+ (n− 1)L0 − (n− 1) + 2

from
L2n = L2n−2 + 2L2n−4 + · · ·+ (n− 1)L2 + nL0 − n+ 2

to obtain (i).

Solution 3 by the proposer.

We will use a combinatorial argument similar to that given in [1]. It is well-known that
L2n−1 on the left side of (i) counts the number of ways to tile a labeled circular board of length
2n−1 with squares and dominoes. For the right side, the non-homogeneous term 2n−1 counts
the tilings consisting of a single square that can be located in any of the 2n − 1 cells, with
n− 1 dominoes. If a tiling has at least two squares, the location of the second square depends
on how the first and last cells are tiled.

• If the tiling is out of phase, meaning that cell 2n−1 and cell 1 are covered by a domino,
then the second square appears on cell 2j + 1, where 1 ≤ j ≤ n− 2. Removing the 2j
tiles covering cells 2 through 2j + 1 yields a tiling of a circular (2n− 1− 2j)-board of
the same type.

• If the tiling is in-phase, meaning that cell 2n−1 and cell 1 are not covered by a domino,
then the second square appears on cell 2j, where 1 ≤ j ≤ n− 1. Removing the 2j tiles
covering cells 1 through 2j yields a tiling of a circular (2n− 1− 2j)-board of the same
type. Note that when j = n− 1, only one cell is left after 2(n− 1) cells are removed,
and there is only L1 = 1 way to tile a single cell.

In both cases, there are j ways to place the first square. Because there are L2n−1−2j ways to
tile a circular (2n− 1− 2j)-board, we deduce that

L2n−1 = 2n− 1 +

n−2∑
j=1

jL2n−1−2j

+ (n− 1)L1 = 2n− 1 +
n−1∑
j=1

jL2n−1−2j ,

which proves (i).
The proof of (ii) follows from (i) by taking the difference of the identities for L2n+1 and

L2n−1 and using the recurrence Lk+1 − Lk−1 = Lk.

Editor’s Notes: Using induction, Ohtsuka showed that, for any integers r and n with n ≥ 1,

n−1∑
k=1

(n− k)L2k+r = L2n+r − nLr+1 − Lr. (4)

Substituting in r = −1 and r = 0 yield the identities (i) and (ii). Ohtsuka also reported that
(4) can be further generalized: for any integers r, n and p with n ≥ 1 and p 6= 0,

n−1∑
k=1

(n− k)G2k+r =
1

p2
(G2n+r − npGr+1 −Gr),

where the sequence {Gn} satisfies Gn+2 = pGn+1 +Gn for all integers n.

Reference

[1] A. T. Benjamin, J. Crouch, and J. A. Sellers, Unified tiling proofs of a family of Fibonacci identities, The
Fibonacci Quarterly, 57.1 (2019), 29–31.
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Also solved by Steve Edwards, I. V. Fedak, Dmitry Fleischman, Robert Frontczak,
Kapil Kumar Gurjar, Carl Libis, Hideyuki Ohtsuka, Luke Paluso (student),
Hemlatha Rajpurohit, Raphael Schumacher (student), J. N. Senadherra, Jason
L. Smith, Allbert Stadler, Daniel Văcaru, and the proposer.

An Inequality in Two Variables

B-1269 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National Uni-
versity, Ivano-Frankivsk, Ukraine.
(Vol. 58.2, May 2020)

For all integers n and real numbers x ≤ y, prove that

Ln−1(xFn + yFn+2) ≤ xFn−2Fn+2 + 4yF 2
n .

Solution by Raphael Schumacher (student), ETH Zurich, Switzerland.

The given inequality is equivalent to

x(Ln−1Fn − Fn−2Fn+2) + y(Ln−1Fn+2 − 4F 2
n) ≤ 0.

Using the two identities Ln−1 = 2Fn − Fn−1 and Fn+2 = 2Fn + Fn−1, we obtain

Ln−1Fn − Fn−2Fn+2 = (2Fn − Fn−1)Fn − (Fn − Fn−1)(2Fn + Fn−1) = F 2
n−1,

Ln−1Fn+2 − 4F 2
n = (2Fn − Fn−1)(2Fn + Fn−1)− 4F 2

n = −F 2
n−1.

Therefore,

x(Ln−1Fn − Fn−2Fn+2) + y(Ln−1Fn+2 − 4F 2
n) = (x− y)F 2

n−1 ≤ 0.

Also solved by Michel Bataille, Brian D. Beasley, Brian Bradie, Kenny B.
Davenport, Steve Edwards, Dmitry Fleischman, Robert Frontczak, Hideyuki
Ohtsuka, Luke Paluso (student), Ángel Plaza, J. N. Senadherra, Albert Stadler,
Dan Weiner, and the proposer.

Four Telescopic Infinite Products

B-1270 Pridon Davlianidze, Tbilisi, Republic of Georgia.
(Vol. 58.2, May 2020)

Evaluate the following infinite products:

(A)

∞∏
n=2

(
1− 5

L2
2n−1

)
(B)

∞∏
n=2

(
1 +

5

L2
2n

)

(C)
∞∏
n=2

(
1 +

5

L2
2n−1

)(
1− 5

L2
2n

)
(D)

∞∏
n=2

(
1− 25

L4
n

)
Solution by Jason L. Smith, Richland Community College, Decatur, IL.

We will use the product formula LmLn = Lm+n + (−1)nLm−n [1] in the following proofs.
For (A), observe that

L2
2n−1 − L2n+1L2n−3 = (L4n−2 − L0)− (L4n−2 − L4) = 5.
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Then,
∞∏
n=2

(
1− 5

L2
2n−1

)
= lim

m→∞

m∏
n=2

L2
2n−1 − 5

L2
2n−1

= lim
m→∞

m∏
n=2

L2n−3L2n+1

L2
2n−1

.

This product telescopes, leaving
∞∏
n=2

(
1− 5

L2
2n−1

)
= lim

m→∞

L1L2m+1

L3L2m−1
=
α2

4
.

For (B), we see that

L2
2n − L2n+2L2n−2 = (L4n + L0)− (L4n + L4) = −5,

so that
∞∏
n=2

(
1 +

5

L2
2n

)
= lim

m→∞

m∏
n=2

L2n−2L2n+2

L2
2n

= lim
m→∞

L2L2m+2

L4L2m
=

3α2

7
.

(C) Again, we use the product formula to obtain

L2
2n−1 − L2nF2n−2 = (L4n−2 − L0)− (L4n−2 + L2) = −5,

L2
2n − L2n+1L2n−1 = (L4n + L0)− (L4n − L2) = 5.

Our product becomes

lim
m→∞

m∏
n=2

(
L2n−2L2n

L2
2n−1

)(
L2n−1L2n+1

L2
2n

)
= lim

m→∞

m∏
n=2

L2n−2L2n+1

L2n−1L2n
= lim

m→∞

L2L2m+1

L3L2m
=

3α

4
.

For (D), factor the general term inside the product and then separate into even and odd-
indexed terms. The infinite product becomes(

1− 5

L2
2

)(
1 +

5

L2
2

)
·
∞∏
k=2

(
1− 5

L2
2k−1

)
·
∞∏
k=2

(
1 +

5

L2
2k

)
·
∞∏
k=2

(
1 +

5

L2
2k−1

)(
1− 5

L2
2k

)
.

This enables us to use the three results above. We determine that
∞∏
n=2

(
1− 25

L4
n

)
=

4

9
· 14

9
· α

2

4
· 3α2

7
· 3α

4
=
α5

18
.

Editor’s Note: The identities (A), (B), and (C) are Lucas analogs of Problem B-1264, and (D)
is the Lucas analog of Problem B-1620.

Reference

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 2001.

Also solved by Michel Bataille, Brian D. Beasley, Brian Bradie, Charles K. Cook,
Kenny B. Davenport, Steve Edwards, I. V. Fedak, Dmitry Fleischman, Robert
Frontczak, Thomas Koshy, Carl Libis, Hideyuki Ohtsuka, Ángel Plaza, Raphael
Schumacher (student), J. N. Senadherra, Albert Stadler, David Terr, and the
proposer.

Belated Acknowledgment: Michel Bataille’s name was inadvertently omitted from the list
of solvers of Problems B-1261–B-1265. The editor would like to express his sincere apologies
for his oversight.

Correction: At the very end of the solution of Problem B-1265, replace L2n+3 with L2n+2 .

184 VOLUME 59, NUMBER 2


