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Please submit solutions and problem proposals to Dr. Harris Kwong, Department of Mathe-
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Each problem or solution should be typed on separate sheets. Solutions to problems in this
issue must be received by May 15, 2024. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results.”

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1336 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.

Show the following identities:
∞∑
n=1

F2n

L4n + 18
=

1

8
, and

∞∑
n=1

F4n

(L4n + 18)2
=

9

800
.

B-1337 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.

Prove that

(i)
F 3
n

Fn−1
+

F 3
n+2

Fn
−

F 4
n+1

Fn−1Fn
= 2Fn+1Fn+2, for any integer n ≥ 3,

(ii)
L3
n

Ln−1
+

L3
n+2

Ln
−

L4
n+1

Ln−1Ln
= 2Ln+1Ln+2, for any integer n ≥ 1.
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B-1338 Proposed by Quang Hung Tran, Hanoi National University of Education
High School for Gifted Students, Hanoi, Vietnam.

Prove that, for any integer n ≥ 0,

(a)
1

Fn+1
+

1

Fn+2
>

16

9Ln+1 − 16Fn
,

(b)
1

Ln+1
+

1

Ln+2
>

16

45Fn+1 − 16Ln
.

B-1339 Proposed by Michel Bataille, Rouen, France.

Let n be a positive integer. Prove that⌊√
2
(
F 2
n+1 − Fn+1Fn−1 + F 2

n−1

) ⌋
−
⌊√

Fn+1Fn−1

⌋
= Fn.

B-1340 Proposed by Hans J. H. Tuenter, Toronto, Canada.

Let a, b, and n be integers, with n nonnegative, and x any real or complex number. Evaluate
n∑

i=0

(
n

i

)
Fn−i
a−1 (x)F

i
a(x)Fb+i(x),

where Fn(x) are the Fibonacci polynomials, defined by the recurrence relation Fn+2(x) =
xFn+1(x) + Fn(x), with initial conditions F0(x) = 0 and F1(x) = 1. Note that the Fibonacci
polynomials are defined at negative indices by extending the above recurrence relation and
that they satisfy the relation F−n(x) = (−1)n+1Fn(x).

SOLUTIONS

Special Cases of Jensen’s Inequality

B-1313 (Corrected) Proposed by Daniel Văcaru, Economical College Maria
Teiuleanu, Piteşti, Romania, and Mihály Bencze, Aprily Lajos, Braşov,
Romania.
(Vol. 60.4, November 2022)

For a ≤ −1, show that
n∑

k=1

Fk(Fn+2 − Fk − 1)a ≥
(
n− 1

n

)a

(Fn+2 − 1)a+1,

n∑
k=1

F 2
k (FnFn+1 − F 2

k )
a ≥

(
n− 1

n

)a

(FnFn+1)
a+1.

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Because
∑n

k=1 Fk = Fn+2 − 1, and
∑n

k=1 F
2
k = FnFn+1, both inequalities are particular

cases of the following more general inequality.
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Let xk, for k = 1, 2, . . . , n, be positive real numbers, and define Sn =
∑n

k=1 xk. For a ≤ −1,
we claim that

n∑
k=1

xk(Sn − xk)
a ≥

(
n− 1

n

)a

Sa+1
n .

Because we can rewrite it as
n∑

k=1

xk
Sn

(
1− xk

Sn

)a

≥
(
n− 1

n

)a

,

we may assume that Sn = 1. The function f(x) = x(1 − x)a is convex for x ∈ (0, 1) because
f ′′(x) = a(1− x)a−2(−2 + x+ ax) > 0. Then, by Jensen’s inequality,

n∑
k=1

xk(1− xk)
a =

n∑
k=1

f(xk) ≥ nf

(
1

n

)
= n · 1

n

(
1− 1

n

)a

=

(
n− 1

n

)a

,

which completes the proof.

Also solved by Thomas Achammer, Michel Bataille, Brian Bradie, Dmitry Fleischman,
G. C. Greubel, Wei-Kai Lai, Albert Stadler, Andrés Ventas, and the proposers.

An Infinite Sum of Arctangent

B-1316 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 60.4, November 2022)

Prove that
∞∑
n=0

tanh−1 1

L2·3n
=

1

4
ln 5.

Solution 1 by Brian Bradie, Christopher Newport University, Newport News, VA.

Note that

tanh−1 1

α2·3n − tanh−1 1

α2·3n+1 = tanh−1

(
1

α2·3n − 1
α6·3n

1− 1
α8·3n

)

= tanh−1

(
α2·3n − 1

α2·3n

α4·3n − 1
α4·3n

)
= tanh−1 F2·3n

F4·3n
= tanh−1 1

L2·3n
,

so the given series telescopes. In particular,

∞∑
n=0

tanh−1 1

L2·3n
=

∞∑
n=0

(
tanh−1 1

α2·3n − tanh−1 1

α2·3n+1

)
= tanh−1 1

α2

=
1

2
ln

1 + 1
α2

1− 1
α2

=
1

2
ln

α2 − αβ

α2 + αβ
=

1

2
ln

α− β

α+ β
=

1

2
ln
√
5 =

1

4
ln 5.
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Solution 2 by Kristen Hartz (undergraduate), PennWest University, California,
PA.

We use tanh−1 =
1

2
ln

(
1 + x

1− x

)
for |x| < 1 to obtain the following:

∞∑
n=0

tanh−1 1

L2·3n
= lim

m→∞

m∑
n=0

1

2
ln

1 +
1

L2·3n

1− 1

L2·3n

 =
1

2
lim

m→∞

m∑
n=0

ln

(
L2·3n + 1

L2·3n − 1

)

=
1

2
lim

m→∞

m∑
n=0

[ln(L2·3n + 1)− ln(L2·3n − 1)]

=
1

2
lim

m→∞

[
ln

(
m∏
k=0

(L2·3k + 1)

)
− ln

(
m∏
k=0

(L2·3k − 1)

)]
.

Using the identities
∏n−1

0

(
L2·3k−1

)
= F3n and

∏n−1
0

(
L2·3k+1

)
= L3n (Identities 126 and 127

[1, pg. 93], respectively), we obtain
∞∑
n=0

tanh−1 1

L2·3n
=

1

2
lim

m→∞
ln

L3m+1

F3m+1

=
1

2
ln

√
5 =

1

4
ln 5.

Reference

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley, New York, 2001.

Also solved by Thomas Achammer, Michel Bataille, Dmitry Fleischman, Robert
Frontczak, G. C. Greubel, Won Kyun Jeong, Ángel Plaza, Jason L. Smith (two
solutions), Albert Stadler, David Terr, Dan Weiner, and the proposer.

A Depressed Quartic Equation with Fibonacci Coefficients

B-1317 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National
University, Ivano-Frankivsk, Ukraine.
(Vol. 60.4, November 2022)

For every integer n, find the real roots of the equation

x4 − 2F 2
n+1x

2 − 4Fn+1F
2
n−1x+ F 4

n+1 − F 4
n−1 = 0.

Solution by Hans J. H. Tuenter, Toronto, Canada.

Consider the depressed quartic polynomial p(x) = x4 − 2b2x2 − 4ba2x + b4 − a4, where a
and b are arbitrary constants. This can be written as

p(x) = [(x− b)2 − a2] [(x+ b)2 + a2].

Hence, its roots are b ± a and −b ± ai. For b = Fn+1 and a = Fn−1, one finds the real roots
as Fn+1 − Fn−1 = Fn and Fn+1 + Fn−1 = Ln, when n ̸= 1. When n = 1, we have a = 0 and
obtain the real roots ±1, each with multiplicity two.

For the Lucas equivalent

x4 − 2L2
n+1x

2 − 4Ln+1L
2
n−1x+ L4

n+1 − L4
n−1 = 0,
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one finds the real roots as Ln and 5Fn.

Editor’s Note: It is clear from the solution that the complex roots are −Fn+1 ±Fn−1i, for the
given equation (when n ̸= 1), and −Ln+1 ± Ln−1i, for the Lucas equivalent.

Also solved by Thomas Achammmer, Emily Antrim (undergraduate), Michael
R. Bacon and Charles K. Cook (jointly), Michel Bataille, Brian D. Beasley,
Brian Bradie, Kenny B. Davenport, Steve Edwards, Dmitry Fleischman, Alison
Gallegos (undergraduate), G. C. Greubel, Ralph P. Grimaldi, Kristen Hartz

(undergraduate), Peyton Matheson (high school student), Hideyuki Ohtsuka, Ángel
Plaza, Jason L. Smith, Albert Stadler, David Terr, Andrés Ventas, and the
proposer.

An Intriguing Alternating Sum

B-1318 Proposed by Kenny B. Davenport, Dallas, PA.
(Vol. 60.4, November 2022)

Prove that
n∑

k=1

(−1)kFk−1FkFk+1 =
(−1)n

12

(
−4F 3

n − F 3
n+1 + 2F 3

n+2 + 4F 3
n+3 − F 3

n+4

)
− 1

2
.

Solution by Hideyuki Ohtsuka, Saitama, Japan.

We shall use the following identities:

(i) F 3
n+4 − 3F 2

n+3 − 6F 3
n+2 + 3F 3

n+1 + F 3
n = 0 (see [1], page 108);

(ii) 3Fn+1FnFn−1 = F 3
n+1 − F 3

n − F 3
n−1 (see [1], page 111).

Let
an = (−1)n

(
−4F 3

n − F 3
n+1 + 2F 3

n+2 + 4F 3
n+3 − F 3

n+4

)
.

We find, by (i) and (ii)

an − an−1 = (−1)n
(
−4F 3

n−1 − 5F 3
n + F 3

n+1 + 6F 3
n+2 + 3F 2

n+3 − F 3
n+4

)
= (−1)n

(
−4F 3

n−1 − 5F 3
n + F 3

n+1 + 6F 3
n+2 + 3F 3

n+3 − F 3
n+4

+ F 3
n+4 − 3F 3

n+3 − 6F 3
n+2 + 3F 3

n+1 + F 3
n

)
= 4 (−1)n (F 3

n+1 − F 3
n − F 3

n−1)

= 12 (−1)n Fn+1FnFn−1.

It follows that
n∑

k=1

(−1)kFk−1FkFk+1 =
1

12

n∑
k=1

(ak − ak−1) =
1

12
(an − a0)

=
1

12
(−1)n

(
−4F 3

n − F 3
n+1 + 2F 3

n+2 + 4F 3
n+3 − F 3

n+4

)
− 1

2
.

Editor’s Notes: Ohtsuka also reported that he found a simple formula
n∑

k=1

(−1)kFk−1FkFk+1 =
(−1)nF3n+1 + 4Fn+2 − 5

10
.
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Tuenter found a generalization. His results, along with some historical notes, appear in an
article in this issue of The Fibonacci Quarterly.

Reference

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume 1, John Wiley & Sons, New York, 2017.

Also solved by Thomas Achammer, Michel Bataille, Brian Bradie, Charles K. Cook
and Michael R. Bacon (jointly), Steve Edwards, G. C. Greubel, Won Kyun Jeong,

Wei-Kai Lai, Yinhao Liu (undergraduate), Ángel Plaza, Raphael Schumacher
(graduate student), Albert Stadler, Hans J. H. Tuenter, and the proposer.

An Inequality with Fibonacci and Lucas Radicals

B-1319 Proposed by Toyesh Prakash Sharma (student), St. C. F. Andrews
School, Agra, India.
(Vol. 60.4, November 2022)

Show that, for n ≥ 4,

F
1

Fn
n L

1
Ln
n ≥

(
F 2
n+1

) 1
Fn+1 .

Solution by Michel Bataille, Rouen, France.

The second derivative of the function f(x) = lnx
x satisfies f ′′(x) = 2 lnx−3

x3 , hence is

nonnegative for x ≥ e3/2. It follows that f is convex on the interval
[
e3/2,∞

)
. Now, if

n ≥ 5, then Ln ≥ Fn ≥ 5 ≥ e3/2, hence

ln(Fn)

Fn
+

ln(Ln)

Ln
= f(Fn) + f(Ln)

≥ 2 f

(
Fn + Ln

2

)
= 2

(
ln
(
Fn+Ln

2

)
Fn+Ln

2

)
=

2

Fn+1
· ln(Fn+1),

because Fn + Ln = 2Fn+1. By exponentiation, we obtain the desired inequality

F
1

Fn
n L

1
Ln
n ≥ (F 2

n+1)
1

Fn+1 .

If n = 4, the inequality also holds because 3
√
3 · 7

√
7 > 5

√
25 (as it is readily checked). We

conclude that the inequality holds for n ≥ 4.

Also solved by Thomas Achammer, Brian Bradie, Dmitry Fleischman, Robert
Frontczak, Hideyuki Ohtsuka, Ángel Plaza, Wei-Kai Lai, Albert Stadler, David
Terr, Andrés Ventas, Nicuşor Zlota, and the proposer.

The Difference of Two Infinite Fibonacci Series

B-1320 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 60.4, November 2022)

Prove that
∞∑
n=1

4

(FnFn+3)2
=

∞∑
n=1

1

(FnFn+2)2
+

1

4
.
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Solution by Won Kyun Jeong, Kyungpook National University, Daegu, South
Korea.

It follows from the identity

F 2
n+3 − F 2

n = (Fn+3 + Fn)(Fn+3 − Fn) = 4Fn+1Fn+2

that
4

(FnFn+3)2
=

1

Fn+1Fn+2

(
1

F 2
n

− 1

F 2
n+3

)
=

Fn+2

F 2
nFn+1F 2

n+2

− Fn+1

F 2
n+1Fn+2F 2

n+3

.

Hence, we obtain
∞∑
n=1

4

(FnFn+3)2
=

∞∑
n=1

(
Fn+2

F 2
nFn+1F 2

n+2

− Fn+1

F 2
n+1Fn+2F 2

n+3

)

=
F3

F 2
1F2F 2

3

+

∞∑
n=1

(
− Fn+1

F 2
n+1Fn+2F 2

n+3

+
Fn+3

F 2
n+1Fn+2F 2

n+3

)

=
1

2
+

∞∑
n=1

1

F 2
n+1F

2
n+3

=
1

2
+

( ∞∑
n=1

1

F 2
nF

2
n+2

)
− 1

F 2
1F

2
3

=
∞∑
n=1

1

(FnFn+2)2
+

1

4
.

This completes the proof.

Also solved by Thomas Achammer, Michel Bataille, Brian Bradie, Robert Frontczak,
Ángel Plaza, Raphael Schumacher (graduate student), Albert Stadler, and the
proposer.
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