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PROBLEMS PROPOSED IN THIS ISSUE

H-868 Proposed by Juan Lopez Gonzalez, Madrid, Spain
Prove that if N is an odd perfect number, then it satisfies

σ0(N) ln 2

2
= N ln 2−

∑

d|N
d>1

(d−1)/2
∑

k=1

∑

ℓ≥1

k2ℓ(22ℓ − 1)

ℓ22ℓ
ζ(2ℓ),

where σ0(N) is the number of divisors of N and for k > 1, ζ(k) is the Riemann zeta function.

H-869 Proposed by Hideyuki Ohtsuka, Saitama, Japan
For positive integer n, prove that

n
∑

k=1

(−1)kLkF
5
k =

(−1)n(F 5
nFn+3 − F 2

n)

2
.

H-870 Proposed by Hideyuki Ohtsuka, Saitama, Japan
For any positive integer n, find closed form expressions for the sums

(i)
n
∑

k=1

(LFk
LFk+1

)(FFk
FFk+1

)3 and (ii)
n
∑

k=1

(FFk
FFk+1

)(LFk
LFk+1

)3.

H-871 Proposed by Robert Frontczak, Stuttgart, Germany
Let (Bn)n≥0 and (Cn)n≥0 be the balancing and Lucas-balancing numbers, respectively, i.e.,

Bn+1 = 6Bn − Bn−1 and Cn+1 = 6Cn − Cn−1 for all n ≥ 1 and B0 = 0, B1 = 1, C0 = 1,
C1 = 3. Show that
∞
∑

n=1

Bn

n(n+ 1)6n
= 6 ln 6− 17√

8
ln(3+

√
8) and

∞
∑

n=1

Cn

n(n+ 1)6n
= 1−17 ln 6+6

√
8 ln(3+

√
8).
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H-872 Proposed by Robert Frontczak, Stuttgart, Germany
Prove that

∞
∑

n=1

η(2n)
F2n

5n
=

π

10 cos( π
2
√
5
)

and

∞
∑

n=1

η(2n)
L2n

5n
=

π

2 cos( π
2
√
5
)
− 1,

where η(s) =
∑∞

k=1(−1)k−1/ks (defined for Re(s) > 0) is the Dirichlet η (or alternating
Riemann zeta) function.

SOLUTIONS

Closed formulas for some sums of products of balancing numbers

H-834 Proposed by Robert Frontczak, Stuttgart, Germany
(Vol. 57, No. 1, February 2018)

Let {Bn}n∈Z and {Cn}n∈Z denote the balancing and Lucas-balancing numbers, respectively,
given by

Bn+1 = 6Bn −Bn−1 and Cn+1 = 6Cn − Cn−1 for all n ≥ 1,

with B0 = 0, B1 = 1, C0 = 1, C1 = 3. Prove that for integers n ≥ 1, j ≥ 0

(i)
∑n

k=1Ck∓jBk±j =
1
32 (C2n+1 − 3)± n

2B2j ;

(ii)
∑n

k=1Ck−jCk+jBk−jBk+j =
1

768 (B4n+2 − 6(2n + 1))− n
4B

2
2j.

Solution by Ángel Plaza, Gran Canaria, Spain

We will use Binet’s formulas for these numbers, Bn =
αn − βn

4
√
2

and Cn =
αn + βn

2
, where

α = 3 + 2
√
2 and β = 3− 2

√
2. Note that αβ = 1.

Therefore, for (i)

n
∑

k=1

Ck∓jBk±j =
1

8
√
2

n
∑

k=1

(

αk∓j + βk∓j
)(

αk±j − βk±j
)

=
1

8
√
2

n
∑

k=1

(

α2k − β2k
)

+
1

8
√
2

n
∑

k=1

(

(

α

β

)±j

−
(

β

α

)±j
)

=
1

8
√
2

(

α2 − α2n+2

1− α2
− β2 − β2n+2

1− β2

)

+
n

2







(

α
β

)±j
−
(

β
α

)±j

4
√
2







=
1

8
√
2

(

α− α2n+1

β − α
− β − β2n+1

α− β

)

± n

2
B2j

=
−α− β + α2n+1 + β2n+1

8
√
2 · 4

√
2

± n

2
B2j

=
1

32
(C2n+1 − 3)± n

2
B2j .
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Now, for (ii), we use that for any integer m, CmBm =
C2m

4
√
2
, so

n
∑

k=1

Ck−jCk+jBk−jBk+j =
1

(4
√
2)2

n
∑

k=1

C2k−2jC2k+2j

=
1

32 · 4

n
∑

k=1

(

α2k−2j + β2k−2j
)(

α2k+2j + β2k+2j
)

=
1

128

n
∑

k=1

(

α4k + β4k +

(

α

β

)2j

+

(

β

α

)2j
)

=
1

128

(

α4 − α4n+4

1− α4
+

β4 − β4n+4

1− β4
+ n

(

α4j + β4j
)

)

=
1

128

(

α2 − α4n+2

β2 − α2
+

β2 − β4n+2

α2 − β2
+ n

(

32B2
2j + 2

)

)

=
1

768

(

−α
2 + β2 + α4n+2 − β4n+2

α− β
+ 6n

(

32B2
2j + 2

)

)

=
1

768
(B4n+2 − 6(2n + 1))− n

4
B2

2j .

Also solved by Brian Bradie, Kenneth B. Davenport, Dmitry Fleischman, Hideyuki
Ohtsuka, and the proposer.

Identities between higher order Bernoulli numbers and Stirling numbers

H-835 Proposed by Andrei K. Svinin and Svetlana V. Svinina, Matrosov Institute
for System Dynamics and Control Theory of SB RAS, Irkutsk, Russia
(Vol. 57, No. 1, February 2019)

Let B
(k)
q be the higher order Bernoulli numbers that are defined by an exponential generating

function as

tk

(et − 1)k
=
∑

q≥0

B
(k)
q

q!
tq.

Prove that

B(k)
n =

n
∑

q=1

s(q + k, k)
(q+k

k

) S(n, q),

where s(n, k) and S(n, k) are the Stirling numbers of the first and second type, respectively.

Solution by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Ger-
many

We apply the exponential generating functions

logm (1 + x) = m!

∞
∑

n=m

s (n,m)
xn

n!
and (ex − 1)m = m!

∞
∑

n=m

S (n,m)
xn

n!
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of the Stirling numbers of the first and second kind, respectively. Putting t = log (1 + x), such
that |log (1 + x)| < 2π, we obtain

tk

(et − 1)k
=

logk (1 + x)

xk
= k!

∞
∑

j=0

s (j + k, k)
xj

(j + k)!

=

∞
∑

j=0

s (j + k, k)

(

j + k

k

)−1
(

et − 1
)j

j!

=

∞
∑

j=0

s (j + k, k)

(

j + k

k

)−1 ∞
∑

n=j

S (n, j)
tn

n!

=

∞
∑

n=0

tn

n!

n
∑

j=0

(

j + k

k

)−1

s (j + k, k)S (n, j) .

This proves that

tk

(et − 1)k
=

∞
∑

n=0

B(k)
n

tn

n!

with coefficients

B(k)
n =

n
∑

j=0

(

j + k

k

)−1

s (j + k, k)S (n, j) .

Remark 1. Note that S (n, 0) = 0 for n ∈ N. If the sum starts with j = 0, it is correct also
in the case n = 0.

Remark 2. In the special case k = 1, we obtain a representation of the Bernoulli numbers

Bn = B(1)
n =

n
∑

j=0

(−1)j j!

j + 1
S (n, j)

in terms of Stirling numbers of the second kind. Here, we used s (j + 1, 1) = (−1)j j! for
j ∈ N ∪ {0}.

Remark 3. In [1], we find formula (2.2):

(x− 1) (x− 2) · · · (x−m) =

m
∑

n=0

(

m

n

)

B(m+1)
n xm−n,

which is cited from Chapter 6 of the book [2]. Comparison with

x (x− 1) (x− 2) · · · (x−m) =
m+1
∑

j=0

s (m+ 1, j) xj ,

(x− 1) (x− 2) · · · (x−m) =
m+1
∑

j=0

s (m+ 1,m+ 1− j) xm−j

yields, for k ∈ N, the initial Bernoulli numbers of higher order

B(k)
n =

(

k − 1

n

)−1

s (k, k − n) (n = 0, . . . , k − 1) .
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Another view is, for fixed n,

B
(k)
0 = 1 (k ≥ 0) ,

B
(k)
1 =

1

k − 1
s (k, k − 1) = −k/2 (k ≥ 1) .

More of such formulas can be found on Page 146 of [2].

[1] L. Carlitz, Some theorems on Bernoulli numbers of higher order, Pacific J. Math., 2 (1952),
127–139.
[2] N. E. Nörlund, Vorlesungen über Differenzenrechnung, Berlin, 1924.

Also solved by Khristo N. Boyadzhiev, Dmitry Fleischman, Won Kyun Jeong,
and the proposers.

Closed formulas for sums of products of members from a certain sequence

H-836 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 57, No. 1, February 2019)

Given a real number p > 0, define the sequence {Sn}n≥0 by

S0 = p, Sn = S2
n−1 + p for n ≥ 1.

For any integer n ≥ 0, find closed form expressions for the sums

(i)
n
∑

k=0

SkSk+1 · · ·Sn and (ii)
n
∑

k=0

(SkSk+1 · · · Sn)
2.

Solution by Raphael Schumacher, ETH Zurich, Switzerland

We will prove by induction that

n
∑

k=0

SkSk+1 · · · Sn =
Sn+1

p
− 1 =

S2
n

p
∀n ∈ N0,

and that
n
∑

k=0

(SkSk+1 · · ·Sn)
2 =

S4
n + 2pS2

n

p(p+ 2)
=

S2
n+1 − p2

p(p+ 2)
∀n ∈ N0.

The above two formulas are true for n = 0, because we have

p = S0 =

0
∑

k=0

SkSk+1 · · ·Sn =
S0+1

p
− 1 =

S1

p
− 1 =

p2 + p

p
− 1 = p =

p2

p
=

S2
0

p

and

p2 = S2
0 =

0
∑

k=0

(SkSk+1 · · ·Sn)
2 =

S4
0 + 2pS2

0

p(p+ 2)
=

p4 + 2p3

p(p + 2)

=
(p2 + p)2 − p2

p(p+ 2)
=

S2
0+1 − p2

p(p+ 2)
=

S2
1 − p2

p(p+ 2)
.
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We assume that the first formula
n
∑

k=0

SkSk+1 · · ·Sn =
Sn+1

p
− 1

is correct for n ∈ N0 and show that this implies the correctness of the formula for n+ 1 ∈ N.

We have
n+1
∑

k=0

SkSk+1 · · ·Sn =

(

n
∑

k=0

SkSk+1 · · ·Sn

)

Sn+1 + Sn+1 =

(

Sn+1

p
− 1

)

Sn+1 + Sn+1

=
S2
n+1

p
− Sn+1 + Sn+1 =

S2
n+1

p
=

Sn+2 − p

p
=

Sn+2

p
− 1 =

S(n+1)+1

p
− 1

for all n ∈ N0. The formula
n
∑

k=0

SkSk+1 · · · Sn =
Sn+1

p
− 1 =

Sn+1 − p

p
=

(S2
n + p)− p

p
=

S2
n

p
∀n ∈ N0

is equivalent and also true. If the second formula
n
∑

k=0

(SkSk+1 · · ·Sn)
2 =

S4
n + 2pS2

n

p(p+ 2)

is correct for n ∈ N0, then this implies that the formula is also correct for n+ 1 ∈ N, because

n+1
∑

k=0

(SkSk+1 · · · Sn)
2 =

(

n
∑

k=0

(SkSk+1 · · ·Sn)
2

)

S2
n+1 + S2

n+1 =

(

S4
n + 2pS2

n

p(p+ 2)

)

S2
n+1 + S2

n+1

=

(

S4
n + 2pS2

n

p(p+ 2)
+ 1

)

S2
n+1 =

(

S4
n + 2pS2

n + p2 + 2p

p(p+ 2)

)

S2
n+1

=

(

(S2
n + p)2 + 2p

p(p+ 2)

)

S2
n+1 =

(

S2
n+1 + 2p

p(p+ 2)

)

S2
n+1 =

S4
n+1 + 2pS2

n+1

p(p+ 2)

for all n ∈ N0 and it holds also that
n
∑

k=0

(SkSk+1 · · ·Sn)
2 =

S4
n + 2pS2

n

p(p+ 2)
=

(S2
n + p)2 − p2

p(p+ 2)
=

S2
n+1 − p2

p(p+ 2)
∀n ∈ N0.

Also solved by Dmitry Fleischman and the proposer.

Relations among sums of Tribonacci numbers

H-837 Proposed by Robert Frontczak, Stuttgart, Germany
(Vol. 57, No. 2, May 2019)

The Tribonacci numbers {Tn}n≥0 satisfy T0 = 0, T1 = T2 = 1, and Tn = Tn−1+Tn−2+Tn−3

for all n ≥ 3. Prove that for any n ≥ 1

n
∑

k=1

T2(n−k)+2





2(n−k)
∑

j=0

Tj



 =
1

2





(

n
∑

k=1

T2k

)2

−
(

n
∑

k=1

T2k−1

)2


 .
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Solution by Hideyuki Ohtsuka, Saitama, Japan

The given identity can be rewritten as follows

n−1
∑

k=0

T2k+2

2k
∑

j=0

Tj =
1

2

(

2n
∑

k=1

Tk

)(

2n
∑

k=1

(−1)kTk

)

.

Here, using the identities
n
∑

k=1

Tk =
Tn+2 + Tn − 1

2
and

n
∑

k=1

(−1)kTk =
(−1)n(Tn+1 − Tn−1)− 1

2

(see [1]), we have

n−1
∑

k=0

T2k+2(T2k+2 + T2k − 1) =
1

4
(T2n+2 + T2n − 1) (T2n+1 − T2n−1 − 1) . (1)

The proof of (1) is by induction on n. For n = 1, we have the left side and right side of (1)
equal 0. We assume that (1) holds for n. For n+ 1, we have

n
∑

k=0

T2k+2(T2k+2 + T2k − 1) = T2n+2(T2n+2 + T2n − 1) +
n−1
∑

k=0

T2k+2(T2k+2 + T2k − 1)

= T2n+2(T2n+2 + T2n − 1) +
1

4
(T2n+2 + T2n − 1)(T2n+1 − T2n−1 − 1)

=
1

4
(4T2n+2 + T2n+1 − T2n−1 − 1)(T2n+2 + T2n − 1)

=
1

4
(T2n+4 + T2n+2 − 1)(T2n+3 − T2n+1 − 1) because

(4T2n+2 + T2n+1 − T2n−1 − 1)− (T2n+4 + T2n+2 − 1) = 3T2n+2 + T2n+1 − T2n−1 − T2n+4

= 3T2n+2 + T2n+1 − T2n−1 − (T2n+3 + T2n+2 + T2n+1) = −T2n+3 + 2T2n+2 − T2n−1

= −(T2n+2 + T2n+1 + T2n) + 2T2n+2 − T2n−1 = T2n+2 − T2n+1 − T2n − T2n−1 = 0,

and

(T2n+2 + T2n − 1)− (T2n+3 − T2n+1 − 1) = T2n+2 + T2n+1 + T2n − T2n+3 = 0.

Thus, (1) holds for n+ 1. Therefore, (1) is proved.

[1] R. Frontczak, Sums of Tribonacci and Tribonacci-Lucas numbers, Internat. J. Math. Anal-
ysis, 12 (2018), 19–24.

Also solved by Brian Bradie, Kenneth B. Davenport, Dmitry Fleischman, Raphael
Schumacher, and the proposer.

Sums with Lucas numbers and binomial coefficients

H-838 Proposed by Sergio Falcón and Ángel Plaza, Gran Canaria, Spain
(Vol. 57, No. 2, May 2019)

Find a closed form expression for the following sum, where r > 1 and n ≥ r are integers

n−r
∑

j=0

((

r + j

r

)

−
(

r + j − 1

r

)

−
(

r + j − 2

r

))

Ln−(r+j).
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Solution by Brian Bradie, Newport News, VA

We find a closed form expression for the more general sum
n−r
∑

j=0

((

r + j

j

)

−
(

r + j − 1

j

)

−
(

r + j − 2

j

))

Gn−(r+j),

where {Gn}n≥0 is the generalized Fibonacci sequence with G0 = a, G1 = b, and Gn =
Gn−1 +Gn−2 for n ≥ 2. Now,

n−r
∑

j=0

((

r + j

j

)

−
(

r + j − 1

j

)

−
(

r + j − 2

j

))

Gn−(r+j)

=

n−r−2
∑

j=0

(

r + j

j

)

(Gn−r−j −Gn−r−j−1 −Gn−r−j−2) +

(

n− 1

r

)

(G1 −G0) +

(

n

r

)

G0

=

(

n− 1

r

)

(b− a) +

(

n

r

)

a =
(n− 1)!

r!(n− r)!
(ar + b(n− r)).

Now for the Lucas sequence a = 2 and b = 1, we have
n−r
∑

j=0

((

r + j

r

)

−
(

r + j − 1

r

)

−
(

r + j − 2

r

))

Ln−(r+j) =
(n− 1)!

r!(n− r)!
(n+ r).

Also solved by Dmitry Fleischman, Hideyuki Ohtsuka, and the proposers.

Late acknowledgement: Dmitry Fleischman has solved Advanced Problem H-833.

Errata: In Advanced Problem H-854 the correct limit to compute is

lim
n→∞

(

lim
x→∞

(

(f(x+ 1))
Ln

(x+1)Ln+1 − (f(x))
Ln

xLn+1

)

x
Ln−1
Ln+1

)

.
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